453 research outputs found

    Early Stage Cavitation Erosion within Ceramics: An Experimental Investigation

    Get PDF
    Six ceramic material types were considered within an experimental investigation to identify the erosion damages mechanisms resulting from cavitation exposure. These materials were a Y-TZP type of zirconia, different commercially available silicon nitrides, a high purity alumina and an hardened high nitrogen stainless steel. An ultrasonic transducer was utilised to produce cavitation conditions and the configuration was “static specimen method” using a 5mm diameter probe, 20kHz and 50μm of amplitude. The exposure times were periods from 15 seconds to 2 hours. Experimental methods employed to characterise wear mechanisms were light microscopy, scanning light interferometry, scanning electronic microscopy. It was found that the zirconia and silicon nitrides demonstrated evidence of local pseudoplastic deformation or depression prior to more pronounced erosion damages by fracture. Zirconia showed evidence of delayed surface changes when the sample is at rest stored in air possibly by spontaneous phase transformation after the completion of the erosion tests. Alumina showed evidence of brittle surface fracture and negligible or no pseudo-plastic deformation. All wear mechanisms are discussed and the materials are ranked in terms of cavitation resistance performance

    A new hard-particle model for anisotropic fluids

    Full text link
    We report a new hard-particle model system consisting of hard cylinders, we have determined the geometrical conditions that let us know whether or not two given cylinders overlap. In addition we have carried out Monte Carlo simulations sampling the canonical ensemble on this system, the numerical results indicate that this system exhibits mesomorphic behaviour

    Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock. a systematic review and meta-analysis

    Get PDF
    Sepsis-induced myocardial dysfunction is associated with poor outcomes, but traditional measurements of systolic function such as left ventricular ejection fraction (LVEF) do not directly correlate with prognosis. Global longitudinal strain (GLS) utilizing speckle-tracking echocardiography (STE) could be a better marker of intrinsic left ventricular (LV) function, reflecting myocardial deformation rather than displacement and volume changes. We sought to investigate the prognostic value of GLS in patients with sepsis and/or septic shock

    Heron Lake: Functioning of a cascading system of urban lakes supplied by stormwater

    Get PDF

    Extending the prediction of the thermodynamic properties of clay minerals to the trapping of trace elements

    Get PDF
    The thermodynamic properties of clay minerals, which control the stability of these minerals in solution, are still a matter of debate in spite of recent advances (Gailhanou et al., submitted). This is especially the case for the minerals that may structurally include trace elements and potential radionuclides such like Ni, Cd, Co, Cr, Mn, Pb, ... The usual methods developed in order to predict thermodynamic properties are parameterised using a given set of minerals. For clay minerals, the latter are mainly composed by Si, Al, Fe and Mg, apart from the alkalis elements (Chermak and Rimstidt, 1989), which means that predictions are limited to minerals whose layers are composed by Si, Al, Fe and Mg. At the vicinity of H&ILW disposal cells, the possible interactions between clay rock or engineered barrier and waste degradation products can result in the appearance of clay minerals that may structurally include radionuclides within an irreversible trapping process. This work aims at proposing a method for predicting the thermodynamic properties of such minerals. Theoretical principle and selection of calibration phases Vieillard (1994) has developed a methodology of estimation based on the difference of electronegativity by considering three scales of values of the parameter HO=(Mz+clay) in the three sites of phyllosilicates. We have considered the work of Vieillard (1994) that originally applies to the estimate of H0f and extended it to the estimate of Cp(T), S0 and V. Some popular estimate methods (Chermak and Rimstidt, 1989) are based on the hypothesis that the thermodynamic property of a mineral can be obtained by combining the properties of its components. An improvement of this principle had consisted in decomposing minerals into their polyhedral components (Chermak and Rimstidt, 1989). Now, we can write the fictive solution equilibrium with a basic polyhedral component MxOy as: and assumming the entropy of this fictive reaction is zero, we can define a SO= parameter as: . The value for the oxide analog of the polyhedral unit is obtained by implementing S0 of the oxide in the S0(MxOy) term. We have also defined, from the same reasoning, similar parameters for heat capacity and volume of the basic polyhedral components: ; . Results and discussion On Figure 1, we have displayed, for entropy, the correlation obtained between calculated values of SO= for the polyhedral unit and for the oxide analog. A straight line and a second-order function are obtained, for the interlayer and octahedral cations, respectively, with a good correlation coefficient. Fig. 1 - Development of predictive capacity for entropy estimates The implementation of the derived semi-empirical, first or second order relations allows to estimate the thermodynamic properties of a clay mineral, MX80 (Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe3+0.173Fe2+0.035)O10(OH)2) in the present case, loaded by 6 radionuclides and to compare the values with the results obtained by Gailhanou et al. (submitted).The results can be expressed in terms of the concentrations for the elements Ni, Cd, Co, Cr, Mn and Pb and in terms of energetic potential with respect to the measurements performed by Gailhanou et al. (submitted)

    Modelling the criticality of silicon nitride surface imperfections under rolling and sliding contact

    Get PDF
    Ceramic rolling elements of hybrid bearings may initially include surface imperfections. In order to provide reliable operation of a bearing, the criticality of such imperfections under rolling contact fatigue is examined by defining them as Star features: intersecting semi-elliptical surface cracks. Parametric study is conducted using Finite Element Method and discussed with help of previously published experimental observations. The effects of the Star feature morphology and configuration, contact pressure and crack face friction are investigated in terms of stress intensity factors. Possible crack propagation scenarios are explained in the present study

    Viremic HIV Infected Individuals with High CD4 T Cells and Functional Envelope Proteins Show Anti-gp41 Antibodies with Unique Specificity and Function

    Get PDF
    BACKGROUND: CD4 T-cell decay is variable among HIV-infected individuals. In exceptional cases, CD4 T-cell counts remain stable despite high plasma viremia. HIV envelope glycoprotein (Env) properties, namely tropism, fusion or the ability to induce the NK ligand NKp44L, or host factors that modulate Env cytopathic mechanisms may be modified in such situation. METHODS: We identified untreated HIV-infected individuals showing non-cytopathic replication (VL>10,000 copies/mL and CD4 T-cell decay<50 cells/µL/year, Viremic Non Progressors, VNP) or rapid progression (CD4 T-cells<350 cells/µL within three years post-infection, RP). We isolated full-length Env clones and analyzed their functions (tropism, fusion activity and capacity to induce NKp44L expression on CD4 cells). Anti-Env humoral responses were also analyzed. RESULTS: Env clones isolated from VNP or RP individuals showed no major phenotypic differences. The percentage of functional clones was similar in both groups. All clones tested were CCR5-tropic and showed comparable expression and fusogenic activity. Moreover, no differences were observed in their capacity to induce NKp44L expression on CD4 T cells from healthy donors through the 3S epitope of gp41. In contrast, anti- Env antibodies showed clear functional differences: plasma from VNPs had significantly higher capacity than RPs to block NKp44L induction by autologous viruses. Consistently, CD4 T-cells isolated from VNPs showed undetectable NKp44L expression and specific antibodies against a variable region flanking the highly conserved 3S epitope were identified in plasma samples from these patients. Conversely, despite continuous antigen stimulation, VNPs were unable to mount a broad neutralizing response against HIV. CONCLUSIONS: Env functions (fusion and induction of NKp44L) were similar in viremic patients with slow or rapid progression to AIDS. However, differences in humoral responses against gp41 epitopes nearby 3S sequence may contribute to the lack of CD4 T cell decay in VNPs by blocking the induction of NKp44L by gp41

    Finite elements based approaches for the modelling of radial crack formation upon Vickers indentation in silicon nitride ceramics

    Get PDF
    © 2019 By having superior properties silicon nitride ceramics can be considered as the state-of-the-art material in the bearing industry. Vickers indentation of this material is typically accompanied by formation of cracks visible on surface. Two Finite Elements models are developed in the current work: the first model is based on fracture mechanics and the second on cleavage stress criterion. Plastic behavior of silicon nitride is included in the modeling, and since little is known on the plasticity of this material, the Drucker-Prager model (used for non-metallic materials)along with the classical J2-plasticity are explored. The results of the fracture mechanics based model correlate well with experimental results in terms of surface crack length. The numerical results in terms of the morphology of the indented zone (including cracks and plastic zone)are provided by the stress criterion based model, and these results correlate well too, with the experimental data
    corecore