213 research outputs found
Geometric Phases in Graphitic Cones
In this article we use a geometric approach to study geometric phases in
graphitic cones. The spinor that describes the low energy states near the Fermi
energy acquires a phase when transported around the apex of the cone, as found
by a holonomy transformation. This topological result can be viewed as an
analogue of the Aharonov-Bohm effect. The topological analysis is extended to a
system with cones, whose resulting configuration is described by an
effective defect.Comment: 4 pages, revtex
Rayleigh Imaging of Graphene and Graphene Layers
We investigate graphene and graphene layers on different substrates by
monochromatic and white-light confocal Rayleigh scattering microscopy. The
image contrast depends sensitively on the dielectric properties of the sample
as well as the substrate geometry and can be described quantitatively using the
complex refractive index of bulk graphite. For few layers (<6) the
monochromatic contrast increases linearly with thickness: the samples behave as
a superposition of single sheets which act as independent two dimensional
electron gases. Thus, Rayleigh imaging is a general, simple and quick tool to
identify graphene layers, that is readily combined with Raman scattering, which
provides structural identification.Comment: 8 pages, 9 figure
A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.
Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs
Inkjet printing of graphene
The inkjet printing of graphene is a cost-effective, and versatile deposition technique for both transparent and non-transparent conductive films. Printing graphene on paper is aimed at low-end, high-volume applications, i.e.; in electromagnetic shielding, photovoltaics or, e.g.; as a replacement for the metal in antennas of radio-frequency identification devices, thereby improving their recyclability and biocompatibility. Here, we present a comparison of two graphene inks, one prepared by the solubilization of expanded graphite in the presence of a surface active polymer, and the other by covalent graphene functionalization followed by redispersion in a solvent but without a surfactant. The non-oxidative functionalization of graphite in the form of a donor-type graphite intercalation compound was carried out by a Birch-type alkylation, where graphene can be viewed as a macrocarbanion. To increase the amount of functionalization we employed a graphite precursor with a high edge to bulk carbon ratio, thus, allowing us to achieve up to six weight percent of functional groups. The functionalized graphene can be readily dispersed at concentrations of up to 3 mg ml-1 in non-toxic organic solvents, and is colloidally stable for more than 2 months. The two inks are readily inkjet printable with good to satisfactory spreading. Analysis of the sheet resistance of the deposited films demonstrated that the inks based on expanded graphite outperform the functionalized graphene inks, possibly due to the significantly larger graphene sheet size in the former, which minimizes the number of sheet-to-sheet contacts along the conductive path. We found that the sheet resistance of printed large-area films decreased with an increase of the number of printed layers. Conductivity levels reached approximately 1-2 kΩ □-1 for 15 printing passes, which roughly equals a film thickness of 800 nm for expanded graphite based inks, and 2 MΩ □-1 for 15 printing passes of functionalized graphene, having a film thickness of 900 nm. Our results show that ink preparation and inkjet printing of graphene-based inks is simple and efficient, and therefore has a high potential to compete with other conductive ink formulations for large-area printing of conductive films
- …