32 research outputs found

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed

    Further clinical and molecular delineation of the 15q24 microdeletion syndrome

    Get PDF
    Background Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. Aim To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. Methods Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. Results Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. Conclusion The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screenin

    Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

    Get PDF
    Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Variant annotation was supported by software resources provided via the Caché Campus program of the InterSystems GmbH to Alexander Teumer

    Review of Rethinking psychiatry: From cultural category to personal experience.

    No full text

    The importance of flooded terrestrial habitats for larval fish in a semi-natural large floodplain (Volga, Russian Federation)

    No full text
    We assessed the importance of flooded terrestrial habitats for fish larvae in a semi-natural large floodplain (Volga, Russian Federation) by comparing abundances at the shoreline of permanent waterbodies with flooded terrestrial habitats. We found that overall larval abundance at the shoreline of permanent waterbodies was 6 to 10 times higher than in flooded terrestrial habitats and was highly consistent over the sampled waterbodies during the 2 year study. The potential mechanisms underlying these results are that shoreline habitats receive an influx of food with retreating warmer water from flooded terrestrial habitats, whereas the risk of hypoxia and stranding is lower at the shoreline than in flooded terrestrial habitats. Furthermore, the risk of predation is also lower at the shoreline compared to the open water habitats. Thus, we hypothesize that, rather than directly providing nursery habitat, the most important function of flooded terrestrial areas for the recruitment of fish in river floodplains is the production of food organisms that become available for larvae and juveniles with the retreating water

    Haploinsufficiency of SF3B4, a Component of the Pre-mRNA Spliceosomal Complex, Causes Nager Syndrome

    Get PDF
    Nager syndrome, first described more than 60 years ago, is the archetype of a class of disorders called the acrofacial dysostoses, which are characterized by craniofacial and limb malformations. Despite intensive efforts, no gene for Nager syndrome has yet been identified. In an international collaboration, FORGE Canada and the National Institutes of Health Centers for Mendelian Genomics used exome sequencing as a discovery tool and found that mutations in SF3B4, a component of the U2 pre-mRNA spliceosomal complex, cause Nager syndrome. After Sanger sequencing of SF3B4 in a validation cohort, 20 of 35 (57%) families affected by Nager syndrome had 1 of 18 different mutations, nearly all of which were frameshifts. These results suggest that most cases of Nager syndrome are caused by haploinsufficiency of SF3B4. Our findings add Nager syndrome to a growing list of disorders caused by mutations in genes that encode major components of the spliceosome and also highlight the synergistic potential of international collaboration when exome sequencing is applied in the search for genes responsible for rare Mendelian phenotypes
    corecore