356 research outputs found
Modeling approach to regime shifts of primary production in shallow coastal ecosystems
Pristine coastal shallow systems are usually dominated by extensive meadows
of seagrass species, which are assumed to take advantage of nutrient supply
from sediment. An increasing nutrient input is thought to favour phytoplankton,
epiphytic microalgae, as well as opportunistic ephemeral macroalgae that
coexist with seagrasses. The primary cause of shifts and succession in the
macrophyte community is the increase of nutrient load to water; however
temperature plays also an important role. A competition model between rooted
seagrass (Zostera marina), macroalgae (Ulva sp), and phytoplankton has been
developed to analyse the succession of primary producer communities in these
systems. Successions of dominance states, with different resilience
characteristics, are found when modifying the input of nutrients and the
seasonal temperature and light intensity forcing.Comment: 33 pages, including 10 figures. To appear in Ecological Complexit
Algal biomass and macroinvertebrate dynamics in intermittent braided rivers: new perspectives from instream pools
Perennial streams and rivers are now largely subjected to fragmentation and lentification processes due to flow reduction, which creates a number of lateral habitats with different degrees of hydrological connectivity. These habitats have environmental conditions and biotic interactions that can be far divergent than those of main channel habitats. However, they remain largely unexplored, especially in temperate regions. We here focused on studying algal dynamics and their interactions with aquatic invertebrates across mesohabitats (i.e., main channel, secondary channel, pools) in streambeds under both normal and low flow conditions. We selected four watercourses in the Po Plain (northern Italy), where we detected the main dynamics and drivers of algal and invertebrate communities by applying mixed effect modelling. A clear algal growth trend was detected in summer, and was similar for all mesohabitats, but with temporal decoupling and doubled values in pools. Mesohabitat and time were central factors in driving benthic algae dynamics that, in turn, negatively affected aquatic invertebrates. Hydrology and algae seemed to have a mutually reinforcing effect on macroinvertebrates by reducing almost all the investigated metrics. By considering future projections on further regime shifts in lotic systems, loss of biodiversity driven by algal blooms could become a major concern, and also for potential cascade impacts on other biotic compartments of river networks
Physical habitat modeling for river macroinvertebrate communities
Habitat models rarely consider macroinvertebrate communities as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the whole community. This research aimed at providing an approach to model the habitat of the macroinvertebrate communities. The study was carried out in three rivers, located in Italy and characterized by a braiding morphology, gravel riverbeds, and low flows during the summer period. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the mesohabitat scale. Using different datasets gathered from field data collection and 2D hydrodynamic simulations, the model was calibrated in the Trebbia River (2019 field campaign) and validated in the Trebbia, Taro, and Enza rivers (2020 field campaign). The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R2 coefficient (R2cv) of the training dataset was 0.71, whereas the R2 coefficient (R2test) for the validation dataset was 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and river morphological modifications. Lastly, the proposed approach allowed to extend the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to ecological flows design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent
Sedimentary organic matter, prokaryotes, and meiofauna across a river-lagoon-sea gradient
In benthic ecosystems, organic matter (OM), prokaryotes, and meiofauna represent a functional bottleneck in the energy transfer towards higher trophic levels and all respond to a variety of natural and anthropogenic disturbances. The relationships between OM and the different components of benthic communities are influenced by multiple environmental variables, which can vary across different habitats. However, analyses of these relationships have mostly been conducted by considering the different habitats separately, even though freshwater, transitional, and marine ecosystems, physically linked to each other, are not worlds apart. Here, we investigated the quantity and nutritional quality of sedimentary OM, along with the prokaryotic and meiofauna abundance, biomass, and biodiversity, in two sampling periods, corresponding to high vs. low freshwater inputs to the sea, along a river-to-sea transect. The highest values of sedimentary organic loads and their nutritional quality, prokaryotic and meiofaunal abundance, and biomass were consistently observed in lagoon systems. Differences in the prokaryotic Operational Taxonomic Units (OTUs) and meiofaunal taxonomic composition, rather than changes in the richness of taxa, were observed among the three habitats and, in each habitat, between sampling periods. Such differences were driven by either physical or trophic variables, though with differences between seasons. Overall, our results indicate that the apparent positive relationship between sedimentary OM, prokaryote and meiofaunal abundance, and biomass across the river-lagoon-sea transect under scrutiny is more the result of a pattern of specifically adapted prokaryotic and meiofaunal communities to different habitats, rather than an actually positive 'response' to OM enrichment. We conclude that the synoptic analysis of prokaryotes and meiofauna can provide useful information on the relative effect of organic enrichment and environmental settings across gradients of environmental continuums, including rivers, lagoons, and marine coastal ecosystems
Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks
We present data from a comprehensive investigation carried out from 2007 to
2010, focussing on nitrogen pollution in the Oglio River basin (3800 km<sup>2</sup>,
Po Plain, Northern Italy). Nitrogen mass balances, computed for
the whole basin with 2000 and 2008 data, suggest a large N surplus in this
area, over 40 000 t N yr<sup>−1</sup>, and increasing between 2000 and 2008.
Calculations indicate a very large impact of animal husbandry and
agricultural activities in this watershed, with livestock manure and
synthetic fertilizers contributing 85% of total N inputs (about 100 000 t N yr<sup>−1</sup>)
and largely exceeding crop uptake and other N losses (about
60 000 t N yr<sup>−1</sup>). Nitrogen from domestic and industrial origin is
estimated as about 5800 and 7200 t N yr<sup>−1</sup>, respectively, although
these loads are overestimated, as denitrification in treatment plants is not
considered; nonetheless, they represent a minor term of the N budget. Annual
export of nitrogen from the basin, calculated from flow data and water
chemistry at the mouth of the Oglio River, is estimated at 13 000 t N yr<sup>−1</sup>,
and represents a relatively small fraction of N inputs and
surplus (∼12% and 34%, respectively). After considering N sinks
in crop uptake, soil denitrification and volatilization, a large excess
remains unaccounted (∼26 000 t N yr<sup>−1</sup>) in unknown temporary or
permanent N sinks. Nitrogen removal via denitrification was evaluated in the
Oglio riverbed with stable isotope techniques (δ<sup>15</sup>N and
δ<sup>18</sup>O in nitrate). The downstream final segment of the river displays an
enriched nitrate stable isotope composition but calculations suggest a N
removal corresponding to at most 20% of the unaccounted for N amount.
Denitrification was also evaluated in riverine wetlands with the isotope
pairing technique. Areal rates are elevated but overall N removal is low
(about 1% of the missing N amount), due to small wetland surfaces and
limited lateral connectivity. The secondary drainage channel network has a
much higher potential for nitrogen removal via denitrification, due to its
great linear development, estimated in over 12 500 km, and its capillary
distribution in the watershed. In particular, we estimated a maximum N loss
up to 8500 t N yr<sup>−1</sup>, which represents up to 33% of the unaccounted
for N amount in the basin. Overall, denitrification in surface aquatic
habitats within this basin can be responsible for the permanent removal of
about 12 000 t N yr<sup>−1</sup>; but the fate of some 14 000 t remains unknown.
Available data on nitrate concentration in wells suggest that in the central
part of the watershed groundwater accumulates nitrogen. Simultaneously, we
provide evidences that part of the stored nitrate can be substantially
recycled via springs and can pollute surface waters via river-groundwater
interactions. This probably explains the ten fold increase of nitrate
concentration in a reach of the Oglio River where no point pollutions
sources are present
Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks
Abstract. We present data from a comprehensive investigation carried out from 2007 to 2010, focussing on nitrogen pollution in the Oglio River basin (3800 km2, Po Plain, Northern Italy). Nitrogen mass balances, computed for the whole basin with 2000 and 2008 data, suggest a large N surplus in this area, over 40 000 t N yr−1, and increasing between 2000 and 2008. Calculations indicate a very large impact of animal husbandry and agricultural activities in this watershed, with livestock manure and synthetic fertilizers contributing 85% of total N inputs (about 100 000 t N yr−1) and largely exceeding crop uptake and other N losses (about 60 000 t N yr−1). Nitrogen from domestic and industrial origin is estimated as about 5800 and 7200 t N yr−1, respectively, although these loads are overestimated, as denitrification in treatment plants is not considered; nonetheless, they represent a minor term of the N budget. Annual export of nitrogen from the basin, calculated from flow data and water chemistry at the mouth of the Oglio River, is estimated at 13 000 t N yr−1, and represents a relatively small fraction of N inputs and surplus (∼12% and 34%, respectively). After considering N sinks in crop uptake, soil denitrification and volatilization, a large excess remains unaccounted (∼26 000 t N yr−1) in unknown temporary or permanent N sinks. Nitrogen removal via denitrification was evaluated in the Oglio riverbed with stable isotope techniques (δ15N and δ18O in nitrate). The downstream final segment of the river displays an enriched nitrate stable isotope composition but calculations suggest a N removal corresponding to at most 20% of the unaccounted for N amount. Denitrification was also evaluated in riverine wetlands with the isotope pairing technique. Areal rates are elevated but overall N removal is low (about 1% of the missing N amount), due to small wetland surfaces and limited lateral connectivity. The secondary drainage channel network has a much higher potential for nitrogen removal via denitrification, due to its great linear development, estimated in over 12 500 km, and its capillary distribution in the watershed. In particular, we estimated a maximum N loss up to 8500 t N yr−1, which represents up to 33% of the unaccounted for N amount in the basin. Overall, denitrification in surface aquatic habitats within this basin can be responsible for the permanent removal of about 12 000 t N yr−1; but the fate of some 14 000 t remains unknown. Available data on nitrate concentration in wells suggest that in the central part of the watershed groundwater accumulates nitrogen. Simultaneously, we provide evidences that part of the stored nitrate can be substantially recycled via springs and can pollute surface waters via river-groundwater interactions. This probably explains the ten fold increase of nitrate concentration in a reach of the Oglio River where no point pollutions sources are present
Exploring the potential of metabarcoding to disentangle macroinvertebrate community dynamics in intermittent streams
Taxonomic sufficiency represents the level of taxonomic detail needed to detect ecological patterns to a level that match the requirement of a study. Most bioassessments apply the taxonomic sufficiency concept and assign specimens to the family or genus level given time constraints and the difficulty to correctly identify species. This holds particularly true for stream invertebrates because small and morphologically similar larvae are hard to distinguish. Low taxonomic resolution may hinder detecting true community dynamics, which thus leads to incorrect inferences about community assembly processes. DNA metabarcoding is a new, affordable and cost-effective tool for the identification of multiple species from bulk samples of organisms. As it provides high taxonomic resolution, it can be used to compare results obtained from different identification levels. Measuring the effect of taxonomic resolution on the detection of community dynamics is especially interesting in extreme ecosystems like intermittent streams to test if species at intermittent sites are subsets of those from perennial sources or if independently recruiting taxa exist. Here we aimed to compare the performance of morphological identification and metabarcoding to detect macroinvertebrate community dynamics in the Trebbia River (Italy). Macroinvertebrates were collected from four perennial and two intermittent sites two months after flow resumption and before the next dry phase. The identification level ranged from family to haplotype. Metabarcoding and morphological identifications found similar alpha diversity patterns when looking at family and mixed taxonomic levels. Increasing taxonomic resolution with metabarcoding revealed a strong partitioning of beta diversity in nestedness and turnover components. At flow resumption, beta diversity at intermittent sites was dominated by nestedness when family-level information was employed, while turnover was evidenced as the most important component when using Operational Taxonomic Units (OTUs) or haplotypes. The increased taxonomic resolution with metabarcoding allowed us to detect species adapted to deal with intermittency, like the chironomid Cricotopus bicinctus and the ephemeropteran Cloeon dipterum. Our study thus shows that family and mixed taxonomic level are not sufficient to detect all aspects of macroinvertebrate community dynamics. High taxonomic resolution is especially important for intermittent streams where accurate information about species-specific habitat preference is needed to interpret diversity patterns induced by drying and the nestedness/ turnover components of beta diversity are of interest to understand community assembly processes
Communities in high definition : Spatial and environmental factors shape the micro-distribution of aquatic invertebrates
According to metacommunity theories, the structure of natural communities is the result of both environmental filtering and spatial processes, with their relative importance depending on factors including local habitat characteristics, functional features of organisms, and the spatial scale considered. However, few studies have explored environmental and spatial processes in riverine systems at local scales, explicitly incorporating spatial coordinates into multi-taxa distribution models. To address this gap, we conducted a small-scale study to discriminate between abiotic and biotic factors affecting the distribution of aquatic macroinvertebrates, applying metacommunity concepts. We studied a mountain section in each of three perennial streams within the Po River Basin (northern Italy). We sampled macroinvertebrates both in summer and winter, using specific in situ 50-point random sampling grids. Environmental factors, including benthic organic matter (BOM), flow velocity, water depth, and substrate were recorded together with spatial coordinates for each sampling point. The relationships between community metrics (taxon richness, abundance, biomass, biomass-abundance ratio, and functional feeding groups) and explanatory variables (environmental and spatial) were assessed using generalised additive models. The influence of the explanatory variables on community structure was analysed with joint species distribution models. Environmental variables-primarily BOM-were the main drivers affecting community metrics, whereas the effects of spatial variables varied among metrics, streams, and seasons. During summer, community structure was strongly affected by BOM and spatial position within the riverbed, the latter probably being a proxy for mass effects mediated by biotic and stochastic processes. In contrast, community structure was mainly shaped by hydraulic variables in winter. Using macroinvertebrate communities as a model group, our results demonstrate that metacommunity concepts can explain small-scale variability in community structure. We found that both environmental filtering and biotic processes shape local communities, with the strength of these drivers depending on the season. These insights provide baseline knowledge that informs our understanding of ecological responses to environmental variability in contexts including restoration ecology, habitat suitability modelling, and biomonitoring.Peer reviewe
Ecosistemi di acque interne e di transizione
In questo contributo la vulnerabilità degli ecosistemi acquatici ai cambiamenti climatici è analizzata in relazione ai meccanismi di organizzazione e mantenimento della biodiversità e dei processi ecosistemici. Dai processi degli ecosistemi derivano funzioni che forniscono una serie di benefici o servizi per il genere umano (Daily et al., 2009). Tali servizi sono in larga misura
dipendenti dalle componenti biologiche degli ecosistemi86. Negli ecosistemi acquatici i processi biogeochimici (ad es. denitrificazione batterica e assimilazione da parte della vegetazione acquatica), garantiscono l’abbattimento dei nutrienti, una funzione ecosistemica che produce il servizio di depurazione dell’acqua. Altri servizi sono la laminazione delle piene, la ricarica degli acquiferi, la regolazione del microclima locale, la produzione di risorse alimentari quali pesci, crostacei, ecc. (Jones, 2013). Le alterazioni degli ecosistemi, in particolare la perdita di specie e la diminuzione della biodiversità danneggiano questi servizi, con ricadute anche di tipo economico(si pensi, ad esempio, ai costi della depurazione dell’acqua destinata al consumo umano)
- …