637 research outputs found

    CH 3 GHz Observations of the Galactic Center

    Full text link
    A 3 ×\times 3 map of the Galactic Center was made at 9\arcmin resolution and 10\arcmin spacing in the CH 2Π1/2^2\Pi_{1/2}, J=1/2, F=1-1 transition at 3335 MHz. The CH emission shows a velocity extent that is nearly that of the CO(1-0) line, but the CH line profiles differ markedly from the CO. The 3335 MHz CH transition primarily traces low-density molecular gas and our observations indicate that the mass of this component within \sim 30 pc of the Galactic Center is \sim 9 ×\times 106^6 M_\odot. The CO-H2_2 conversion factor obtained for the low-density gas in the mapped region is greater than that thought to apply to the dense molecular gas at the Galactic Center. In addition to tracing the low-density molecular gas at the Galactic Center, the CH spectra show evidence of emission from molecular clouds along the line of sight both in the foreground and background. The scale height of these clouds ranges from 27 - 109 pc, consistent with previous work based on observations of molecular clouds in the inner Galaxy.Comment: 29 pages, 12 figure

    Potential Variations in the Interstellar N I Abundance

    Full text link
    We present Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph observations of the weak interstellar N I doublet at 1160 Angstroms toward 17 high-density sight lines [N(Htot)>=10^21 cm^-2]. When combined with published data, our results reveal variations in the fractional N I abundance showing a systematic deficiency at large N(Htot). At the FUSE resolution (~20 km s^-1), the effects of unresolved saturation cannot be conclusively ruled out, although O I at 1356 Angstroms shows little evidence of saturation. We investigated the possibility that the N I variability is due to the formation of N_2 in our mostly dense regions. The 0-0 band of the c'_4 ^1Sigma^+_u - X ^1Sigma^+_g transition of N_2 at 958 Angstroms should be easily detected in our FUSE data; for 10 of the denser sight lines, N_2 is not observed at a sensitivity level of a few times 10^14 cm^-2. The observed N I variations are suggestive of an incomplete understanding of nitrogen chemistry. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer, which is operated for NASA by the Johns Hopkins University under NASA contract NAS 5-32985, and the NASA/ESA Hubble Space Telescope, obtained from the Multimission Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter

    CN and HCN in Dense Interstellar Clouds

    Full text link
    We present a theoretical investigation of CN and HCN molecule formation in dense interstellar clouds. We study the gas-phase CN and HCN production efficiencies from the outer photon-dominated regions (PDRs) into the opaque cosmic-ray dominated cores. We calculate the equilibrium densities of CN and HCN, and of the associated species C+, C, and CO, as functions of the far-ultraviolet (FUV) optical depth. We consider isothermal gas at 50 K, with hydrogen particle densities from 10^2 to 10^6 cm^-3. We study clouds that are exposed to FUV fields with intensities 20 to 2*10^5 times the mean interstellar FUV intensity. We assume cosmic-ray H2 ionization rates ranging from 5*10^-17 s^-1, to an enhanced value of 5*10^-16 s^-1. We also examine the sensitivity of the density profiles to the gas-phase sulfur abundance.Comment: Accepted for publication in ApJ, 33 pages, 8 figure

    Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas

    Get PDF
    The evolution of quasi-isentropic magnetohydrodynamic waves of small but finite amplitude in an optically thin plasma is analyzed. The plasma is assumed to be initially homogeneous, in thermal equilibrium and with a straight and homogeneous magnetic field frozen in. Depending on the particular form of the heating/cooling function, the plasma may act as a dissipative or active medium for magnetoacoustic waves, while Alfven waves are not directly affected. An evolutionary equation for fast and slow magnetoacoustic waves in the single wave limit, has been derived and solved, allowing us to analyse the wave modification by competition of weakly nonlinear and quasi-isentropic effects. It was shown that the sign of the quasi-isentropic term determines the scenario of the evolution, either dissipative or active. In the dissipative case, when the plasma is first order isentropically stable the magnetoacoustic waves are damped and the time for shock wave formation is delayed. However, in the active case when the plasma is isentropically overstable, the wave amplitude grows, the strength of the shock increases and the breaking time decreases. The magnitude of the above effects depends upon the angle between the wave vector and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar abundances either in the interstellar medium or in the solar atmosphere, as well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature where the plasma is isentropically unstable and the corresponding time and length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200

    Experimental investigation on camera calibration for 3D photogrammetric scanning of micro-features for micrometric resolution

    Full text link
    [EN] Recently, it has been demonstrated that photogrammetry can be used for the measurement of small objects with micro-features, with good results and lower cost, compared to other established techniques such as interferometry, conoscopic holography, and 3D microscopy. Calibration is a critical step in photogrammetry and the classical pinhole camera model has been tested for magnifications lower than 2×. At higher magnification levels, because of the reduction of the depth of field (DOF), images can lead to calibration data with low reprojection errors. However, this could lead to bad results in the 3D reconstruction. With the aim of verifying the possibility of applying the camera model to magnifications higher than 2×, experiments have been conducted using reflex cameras with 60 mm macro lens, equipped with the combination of three extension tubes, corresponding to 2.06, 2.23, and 2.4 magnification levels, respectively. Experiments consisted of repeating calibration five times for each configuration and testing each calibration model, measuring two artifacts with different geometrical complexity. The calibration results have shown good repeatability of a subset of the internal calibration parameters. Despite the differences in the calibration reprojection error (RE), the quality of the photogrammetric 3D models retrieved was stable and satisfying. The experiment demonstrated the possibilities of the photogrammetric system presented, equipped to very high magnification levels, to retrieve accurate 3D reconstruction of micro-features with uncertainties of few micrometers, comparable with industry s expensive state-of-the-art technologies.Percoco, G.; Guerra, MG.; Sánchez Salmerón, AJ.; Galantucci, LM. (2017). Experimental investigation on camera calibration for 3D photogrammetric scanning of micro-features for micrometric resolution. The International Journal of Advanced Manufacturing Technology. 91(9-12):2935-2947. https://doi.org/10.1007/s00170-016-9949-6S29352947919-12Uhlmann E, Mullany B, Biermann D, Rajurkar KP, Hausotte T, Brinksmeier E (2016) Process chains for high-precision components with micro-scale features. CIRP Ann - Manuf Technol 65:549–572. doi: 10.1016/j.cirp.2016.05.001Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann - Manuf Technol 56:810–835. doi: 10.1016/j.cirp.2007.10.008Rodríguez-martín M, Lagüela S, González-aguilera D, Rodríguez-gonzálvez P (2015) Optics & Laser Technology Procedure for quality inspection of welds based on macro-photogrammetric three-dimensional reconstruction;73:54–62Xu Z, Toncich D, Stefani S (1999) Vision-based measurement of three-dimensional geometric workpiece properties. Int J Adv Manuf Technol 15:322–331. doi: 10.1007/s001700050074Galantucci LM, Lavecchia F, Percoco G (2013) Multistack close range photogrammetry for low cost submillimeter metrology. J Comput Inf Sci Eng 13:44501. doi: 10.1115/1.4024973Maté González, M.T., Yravedra, J., González-Aguilera, D., Palomeque-González, J.F., Domínguez-Rodrigo, M. Micro-photogrammetric characterization of cut marks on bones (2015) Journal of Archaeological Science, 62, pp. 128-142. doi: 10.1016/j.jas.2015.08.006Brown DC (1971) Close-range camera calibration. Photogramm Eng 37:855–866 doi:10.1.1.14.6358Tang R, Fritsch D (2013) Correlation analysis of camera self-calibration in close range photogrammetry. Photogramm Rec 28:86–95. doi: 10.1111/phor.12009Agisoft LLC (2011) Agisoft PhotoScan User Manual :37.Jcgm JCFGIM (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement- annex B "general metrological terms"- B.2.14. Int Organ Stand Geneva ISBN 50:134. doi: 10.1373/clinchem.2003.030528Yanagi, H., Chikatsu, H. Performance evaluation of macro lens in digital close range photogrammetry (2009) Proceedings of SPIE - The International Society for Optical Engineering, 7447, art. no. 74470J, doi: 10.1117/12.825817Galantucci LM, Pesce M, Lavecchia F (2015) A stereo photogrammetry scanning methodology, for precise and accurate 3D digitization of small parts with sub-millimeter sized features. CIRP Ann - Manuf Technol 64:507–510. doi: 10.1016/j.cirp.2015.04.016Galantucci LM, Pesce M, Lavecchia F (2015) A powerful scanning methodology for 3D measurements of small parts with complex surfaces and sub millimeter-sized features, based on close range photogrammetry. Precis Eng. doi: 10.1016/j.precisioneng.2015.07.010Percoco G, Sánchez Salmerón AJ (2015) Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view. Meas Sci Technol 26:95203. doi: 10.1088/0957-0233/26/9/095203Gallo A, Muzzupappa M, Bruno F (2014) 3D reconstruction of small sized objects from a sequence of multi-focused images. J Cult Herit 15:173–182. doi: 10.1016/j.culher.2013.04.009Stamatopoulos C, Fraser CS, Cronk S (2010) On the self-calibration of long focal length lenses. Int Arch Photogramm Remote Sens Spat Inf Sci Newcastle upon Tyne, UK 2010 XXXVIII:560–564Atkinson KB (1996) Close range photogrammetry and machine vision. Whittles PublishingLuhmann T, Fraser C, Maas HG (2016) Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J Photogramm Remote Sens 115:37–46. doi: 10.1016/j.isprsjprs.2015.10.006Tsai RY (1986) An efficient and accurate camera calibration technique for 3D machine vision. Proc IEEE Conf Comput Vis Pattern Recognition 1986Ricolfe-Viala C, Sanchez-Salmeron A-J (2011) Camera calibration under optimal conditions. Opt Express 19:10769–10775. doi: 10.1364/OE.19.010769Wang L, Wang W, Shen C, Duan F (2016) A convex relaxation optimization algorithm for multi-camera calibration with 1D objects. NeurocomputingRicolfe-Viala C, Sanchez-Salmeron A. Lens distortion models evaluation. Appl Opt 2010;49:5914–5928.Percoco G, Lavecchia F, Salmerón AJS (2015) Preliminary study on the 3D digitization of millimeter scale products by means of photogrammetry. Procedia CIRP 33:257–262. doi: 10.1016/j.procir.2015.06.046Bradski G (2000) The OpenCV Library. Dr Dobb’s J Softw ToolsRicolfe-Viala C, Sanchez-Salmeron A-J (2011) Optimal conditions for camera calibration using a planar template. 2011 18th IEEE. Int Conf Image Process, IEEE 2011:853–856. doi: 10.1109/ICIP.2011.6116691Lowe DG (1999) Object recognition from local scale-invariant features. Proc Seventh IEEE Int Conf Comput Vis 2:1150–1157. doi: 10.1109/ICCV.1999.790410Triggs B, Mclauchlan P, Hartley R, Fitzgibbon A, Triggs B, Mclauchlan P, et al. (2010) Bundle adjustment—a modern synthesis to cite this version: bundle adjustment—a modern synthesisCignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) Meshlab: an open-source mesh processing tool. Eurographics Ital Chapter Conf 2008:129–136Besl P, McKay N (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256. doi: 10.1109/34.12179

    GYES, a multifibre spectrograph for the CFHT

    Full text link
    We have chosen the name of GYES, one of the mythological giants with one hundred arms, offspring of Gaia and Uranus, for our instrument study of a multifibre spectrograph for the prime focus of the Canada-France-Hawaii Telescope. Such an instrument could provide an excellent ground-based complement for the Gaia mission and a northern complement to the HERMES project on the AAT. The CFHT is well known for providing a stable prime focus environment, with a large field of view, which has hosted several imaging instruments, but has never hosted a multifibre spectrograph. Building upon the experience gained at GEPI with FLAMES-Giraffe and X-Shooter, we are investigating the feasibility of a high multiplex spectrograph (about 500 fibres) over a field of view 1 degree in diameter. We are investigating an instrument with resolution in the range 15000 to 30000, which should provide accurate chemical abundances for stars down to 16th magnitude and radial velocities, accurate to 1 km/s for fainter stars. The study is led by GEPI-Observatoire de Paris with a contribution from Oxford for the study of the positioner. The financing for the study comes from INSU CSAA and Observatoire de Paris. The conceptual study will be delivered to CFHT for review by October 1st 2010.Comment: Contributed talk at the Gaia ELSA conference 2010, S\`evres 7-11 June 2010, to be published on the EAS Series, Editors: C. Turon, F. Arenou & F. Meynadie

    Spectroscopic survey of the Galaxy with Gaia I. Design and performance of the Radial Velocity Spectrometer

    Get PDF
    The definition and optimisation studies for the Gaia satellite spectrograph, the Radial Velocity Spectrometer (RVS), converged in late 2002 with the adoption of the instrument baseline. This paper reviews the characteristics of the selected configuration and presents its expected performance. The RVS is a 2.0 by 1.6 degree integral field spectrograph, dispersing the light of all sources entering its field of view with a resolving power R=11 500 over the wavelength range [848, 874] nm. The RVS will continuously and repeatedly scan the sky during the 5 years of the Gaia mission. On average, each source will be observed 102 times over this period. The RVS will collect the spectra of about 100-150 million stars up to magnitude V~17-18. At the end of the mission, the RVS will provide radial velocities with precisions of ~2 km/s at V=15 and \~15-20 km/s at V=17, for a solar metallicity G5 dwarf. The RVS will also provide rotational velocities, with precisions (at the end of the mission) for late type stars of sigma_vsini ~5 km/s at V~15 as well as atmospheric parameters up to V~14-15. The individual abundances of elements such as Silicon and Magnesium, vital for the understanding of Galactic evolution, will be obtained up to V~12-13. Finally, the presence of the 862.0 nm Diffuse Interstellar Band (DIB) in the RVS wavelength range will make it possible to derive the three dimensional structure of the interstellar reddening.Comment: 17 pages, 9 figures, accepted for publication in MNRAS. Fig. 1,2,4,5, 6 in degraded resolution; available in full resolution at http://blackwell-synergy.com/links/doi/10.1111/j.1365-2966.2004.08282.x/pd

    Herschel observations of extra-ordinary sources: Detecting spiral arm clouds by CH absorption lines

    Get PDF
    We have observed CH absorption lines (J=3/2,N=1J=1/2,N=1J=3/2, N=1 \leftarrow J=1/2, N=1) against the continuum source Sgr~B2(M) using the \textit{Herschel}/HIFI instrument. With the high spectral resolution and wide velocity coverage provided by HIFI, 31 CH absorption features with different radial velocities and line widths are detected and identified. The narrower line width and lower column density clouds show `spiral arm' cloud characteristics, while the absorption component with the broadest line width and highest column density corresponds to the gas from the Sgr~B2 envelope. The observations show that each `spiral arm' harbors multiple velocity components, indicating that the clouds are not uniform and that they have internal structure. This line-of-sight through almost the entire Galaxy offers unique possibilities to study the basic chemistry of simple molecules in diffuse clouds, as a variety of different cloud classes are sampled simultaneously. We find that the linear relationship between CH and H2_2 column densities found at lower AVA_V by UV observations does not continue into the range of higher visual extinction. There, the curve flattens, which probably means that CH is depleted in the denser cores of these clouds.Comment: Accepted for publication in A&A, HIFI Special Issu

    Molecular Hydrogen in the Ionized Region of Planetary Nebulae

    Full text link
    This paper presents an analysis of the concentration of the hydrogen molecule inside the ionized region of planetary nebulae. The equations corresponding to the ionization and chemical equilibria of H, H+, H-, H2, H2+, and H3+ are coupled with the equations of ionization and thermal balance for a photoionized atomic gas. Forty different reactions related to the formation or the destruction of these species are included. The presence of dust is taken into account, since grains act as catalysts for the production of H2, as well as shield the molecules against the stellar ionizing radiation. We analyze the effect of the stellar ionizing continuum, as well as of the gas and grain properties on the calculated H2 mass. It is shown that a significant concentration of H2 can survive inside the ionized region of planetary nebulae, mostly in the inner region of the recombination zone. The total H2 to total hydrogen mass ratio inside the ionized region increases with the central star temperature, and, depending on the PN physical conditions, it can be of the order of 10^-6 or even higher. The increase of the recombination zone with the stellar temperature can account for such correlation. This can explain why the H2 emission is more frequently observed in bipolar planetary nebulae (Gatley's rule), since this kind of object has typically hotter stars. Applying our results for the planetary nebula NGC 6720, we obtain an H2 to hydrogen mass ratio similar to the value obtained from the observed H2 line emission.Comment: 13 pages, 4 figures. Accepted for publication in Ap

    Gaia Data Release 2: Properties and validation of the radial velocities

    Get PDF
    Context. For Gaia DR2, 280 million spectra collected by the Radial Velocity Spectrometer instrument on board Gaia were processed, and median radial velocities were derived for 9.8 million sources brighter than GRVS = 12 mag. Aims. This paper describes the validation and properties of the median radial velocities published in Gaia DR2. Methods. Quality tests and filters were applied to select those of the 9.8 million radial velocities that have the quality to be published in Gaia DR2. The accuracy of the selected sample was assessed with respect to ground-based catalogues. Its precision was estimated using both ground-based catalogues and the distribution of the Gaia radial velocity uncertainties. Results. Gaia DR2 contains median radial velocities for 7 224 631 stars, with Teff in the range [3550, 6900] K, which successfully passed the quality tests. The published median radial velocities provide a full-sky coverage and are complete with respect to the astrometric data to within 77.2% (for G larger than or equal to 12.5 mag). The median radial velocity residuals with respect to the ground-based surveys vary from one catalogue to another, but do not exceed a few 100 m s-1. In addition, the Gaia radial velocities show a positive trend as a function of magnitude, which starts around GRVS - 9 mag and reaches about +500 m s-1 at GRVS = 11.75 mag. The origin of the trend is under investigation, with the aim to correct for it in Gaia DR3. The overall precision, estimated from the median of the Gaia radial velocity uncertainties, is 1.05 km s-1. The radial velocity precision is a function of many parameters, in particular, the magnitude and effective temperature. For bright stars, GRVS E [4, 8] mag, the precision, estimated using the full dataset, is in the range 220-350 m s-1, which is about three to five times more precise than the pre-launch specification of 1 km s-1. At the faint end, GRVS = 11.75 mag, the precisions for Teff = 5000 and 6500 K are 1.4 and 3.7 km s-1, respectively.Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Most of the authors are current or past members of the ESA Gaia mission team and of the Gaia DPAC and their work has been supported by the French Centre National de la Recherche Scientifique (CNRS), the Centre National d’Etudes Spatiales (CNES), the Agence Nationale de la Recherche, the Région Aquitaine, the Université de Bordeaux, the Utinam Institute of the Université de Franche-Comté, and the Institut des Sciences de l’ Univers (INSU); the Science and Technology Facilities Council and the United Kingdom Space Agency; the Belgian Federal Science Policy Office (BELSPO) through various Programme de Développement d’Expériences Scientifiques (PRODEX) grants; the German Aerospace Agency (Deutsches Zentrum fur Luft- und Raumfahrt e.V., DLR); the Algerian Centre de Recherche en Astronomie, Astrophysique et Géophysique of Bouzareah Observatory; the Swiss State Secretariat for Education, Research, and Innovation through the ESA PRODEX programme, the Mesures d’Accompagnement, the Swiss Activités Nationales Complémentaires, and the Swiss National Science Foundation; the Slovenian Research Agency (research core funding No. P1-0188
    corecore