1,326 research outputs found

    IRIS Observations of Spicules and Structures Near the Solar Limb

    Full text link
    We have analyzed IRIS spectral and slit-jaw observations of a quiet region near the South Pole. In this article we present an overview of the observations, the corrections, and the absolute calibration of the intensity. We focus on the average profiles of strong (Mg ii h and k, C ii and Si iv), as well as of weak spectral lines in the near ultraviolet (NUV) and the far ultraviolet (FUV), including the Mg ii triplet, thus probing the solar atmosphere from the low chromosphere to the transition region. We give the radial variation of bulk spectral parameters as well as line ratios and turbulent velocities. We present measurements of the formation height in lines and in the NUV continuum, from which we find a linear relationship between the position of the limb and the intensity scale height. We also find that low forming lines, such as the Mg ii triplet, show no temporal variations above the limb associated with spicules, suggesting that such lines are formed in a homogeneous atmospheric layer and, possibly, that spicules are formed above the height of 2 arc sec. We discuss the spatio-temporal structure near the limb from images of intensity as a function of position and time. In these images, we identify p-mode oscillations in the cores of lines formed at low heights above the photosphere, slow moving bright features in O i and fast moving bright features in C ii. Finally, we compare the Mg ii k and h line profiles, together with intensity values of the Balmer lines from the literature, with computations from the PROM57Mg non-LTE model developed at the Institut d'Astrophysique Spatiale and estimated values of the physical parameters. We obtain electron temperatures in the range of 8000\sim8000 K at small heights to 20000\sim20000 K at large heights, electron densities from 1.1×10111.1 \times 10^{11} to 4×10104 \times 10^{10} cm3^{-3} and a turbulent velocity of 24\sim24km/s.Comment: Accepted for publication in Solar Physic

    Rumen fermentative activity in the goat and sheep

    Get PDF
    No Abstract

    First High-resolution Spectroscopic Observations of an Erupting Prominence Within a Coronal Mass Ejection by the Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    Spectroscopic observations of prominence eruptions associated with coronal mass ejections (CMEs), although relatively rare, can provide valuable plasma and 3D geometry diagnostics. We report the first observations by the Interface Region Imaging Spectrograph (IRIS) mission of a spectacular fast CME/prominence eruption associated with an equivalent X1.6 flare on 2014 May 9. The maximum plane-of-sky and Doppler velocities of the eruption are 1200 and 460 km/s, respectively. There are two eruption components separated by ~200 km/s in Doppler velocity: a primary, bright component and a secondary, faint component, suggesting a hollow, rather than solid, cone-shaped distribution of material. The eruption involves a left-handed helical structure undergoing counter-clockwise (viewed top-down) unwinding motion. There is a temporal evolution from upward eruption to downward fallback with less-than-free-fall speeds and decreasing nonthermal line widths. We find a wide range of Mg II k/h line intensity ratios (less than ~2 expected for optically-thin thermal emission): the lowest ever-reported median value of 1.17 found in the fallback material and a comparably high value of 1.63 in nearby coronal rain and intermediate values of 1.53 and 1.41 in the two eruption components. The fallback material exhibits a strong (>5σ> 5 \sigma) linear correlation between the k/h ratio and the Doppler velocity as well as the line intensity. We demonstrate that Doppler dimming of scattered chromospheric emission by the erupted material can potentially explain such characteristics.Comment: 12 pages, 6 figures, accepted by ApJ (Feb 15, 2015

    Electron density in the quiet solar coronal transition region from SoHO/SUMER measurements of S VI line radiance and opacity

    Full text link
    Context: The sharp temperature and density gradients in the coronal transition region are a challenge for models and observations. Aims: We set out to get linearly- and quadratically-weighted average electron densities in the region emitting the S VI lines, using the observed opacity and the emission measure of these lines. Methods: We analyze SoHO/SUMER spectroscopic observations of the S VI lines, using the center-to-limb variations and radiance ratios to derive the opacity. We also use the Emission Measure derived from radiance at disk center. Results: We get an opacity at S VI line center of the order of 0.05. The resulting average electron density is 2.4 10^16 m^-3 at T = 2 10^5 K. This value is higher than the values obtained from radiance measurements. Conversely, taking a classical value for the density leads to a too high value of the thickness of the emitting layer. Conclusions: The pressure derived from the Emission Measure method compares well with previous determinations and implies a low opacity of 5 10^-3 to 10^-2. The fact that a direct derivation leads to a much higher opacity remains unexplained, despite tentative modeling of observational biases. Further measurements need to be done, and more realistic models of the transition region need to be used.Comment: 11 pages, 9 figure

    First high-resolution look at the quiet Sun with ALMA at 3 mm

    Full text link
    We present an overview of high resolution quiet Sun observations, from disk center to the limb, obtained with the Atacama Large mm and sub-mm Array (ALMA) at 3 mm. Seven quiet Sun regions were observed with resolution of up to 2.5" by 4.5". We produced both average and snapshot images by self-calibrating the ALMA visibilities and combining the interferometric images with full disk solar images. The images show well the chromospheric network, which, based on the unique segregation method we used, is brighter than the average over the fields of view of the observed regions by 305\sim 305 K while the intranetwork is less bright by 280\sim 280 K, with a slight decrease of the network/intranetwork contrast toward the limb. At 3 mm the network is very similar to the 1600 \AA\ images, with somewhat larger size. We detected for the first time spicular structures, rising up to 15" above the limb with a width down to the image resolution and brightness temperature of \sim 1800 K above the local background. No trace of spicules, either in emission or absorption, was found on the disk. Our results highlight ALMA's potential for the study of the quiet chromosphere.Comment: Astronomy and Astrophysics (Letters), in pres

    ClimWood2030, Climate benefits of material substitution by forest biomass and harvested wood products: Perspective 2030 - Final Report

    Get PDF
    The ClimWood2030 study, commissioned by DG CLIMA of the European Commission, quantifies the five ways in which the EU forest sector contributes to climate change mitigation: carbon sequestration and storage in EU forests, carbon storage in harvested wood products in the EU, substitution of wood products for functionally equivalent materials and substitution of wood for other sources of energy, and displacement of emissions from forests outside the EU. It also explores through scenario analysis, based on a series of interlocking models (GLOBIOM, G4M and WoodCarbonMonitor), along with detailed analysis of Forest Based Functional Units, based on life cycle assessment (LCA), the consequences for GHG balances of policy choices at present under consideration. The focus is on the EU-28, but GHG balances for other parts of the world are also considered, notably to assess consequences of EU policy choices for other regions. The five scenarios are (I) The ClimWood2030 reference scenario, (II) Increase carbon stock in existing EU forests, (III) Cascade use – increase recovery of solid wood products, (IV) Cascade use – prevent first use of biomass for energy and (V) Strongly increase material wood use. The study presents detailed scenario results for key parameters, the policy instruments linked to the scenarios, and main conclusions

    Prenatal Diagnosis of Gómez-López-Hernández Syndrome.

    Get PDF
    Gómez-López-Hernández syndrome (GLHS), also known as cerebello-trigeminal-dermal dysplasia, is an extremely rare neurocutaneous disease, classically described by the triad of rhombencephalosynapsis (RES), bilateral focal alopecia, and trigeminal anesthesia. The clinical and radiographic spectrum of GLHS is now known to be broader, including craniofacial and supratentorial anomalies, as well as neurodevelopmental issues. Here, we present a case of antenatally diagnosed GLHS with RES, hydrocephaly, and craniofacial anomalies identified on ultrasound (low-set ears with posterior rotation, hypertelorism, midface hypoplasia, micrognathia, and anteverted nares) which were confirmed by autopsy after termination of pregnancy at 23 weeks of gestation. As no known genetic causes have been identified and the classical triad is not applicable to prenatal imaging, prenatal diagnosis of GLHS is based on neuroimaging and the identification of supporting features. In presence of an RES associated with craniofacial abnormalities in prenatal (brachycephaly, turricephaly, low-set ears, midface retrusion, micrognathia), GLHS should be considered as "possible" according to postnatal criteria

    Monte-Carlo simulations of the recombination dynamics in porous silicon

    Full text link
    A simple lattice model describing the recombination dynamics in visible light emitting porous Silicon is presented. In the model, each occupied lattice site represents a Si crystal of nanometer size. The disordered structure of porous Silicon is modeled by modified random percolation networks in two and three dimensions. Both correlated (excitons) and uncorrelated electron-hole pairs have been studied. Radiative and non-radiative processes as well as hopping between nearest neighbor occupied sites are taken into account. By means of extensive Monte-Carlo simulations, we show that the recombination dynamics in porous Silicon is due to a dispersive diffusion of excitons in a disordered arrangement of interconnected Si quantum dots. The simulated luminescence decay for the excitons shows a stretched exponential lineshape while for uncorrelated electron-hole pairs a power law decay is suggested. Our results successfully account for the recombination dynamics recently observed in the experiments. The present model is a prototype for a larger class of models describing diffusion of particles in a complex disordered system.Comment: 33 pages, RevTeX, 19 figures available on request to [email protected]

    Longevity of an immunocontraceptive vaccine effect on fecundity in rats

    Get PDF
    Increases in human-wildlife conflicts alongside cultural shifts against lethal control methods are driving the need for alternative wildlife management tools such as fertility control. Contraceptive formulations suitable for oral delivery would permit broader remote application in wildlife species. This study evaluated the contraceptive effect and immune response to two novel injectable immunocontraceptive formulations targeting the Gonadotropin Releasing Hormone (GnRH): MAF-IMX294 and MAF-IMX294P conjugates, both identified as having potential as oral contraceptives. The study also explored whether in multiparous species immunocontraceptives may either totally prevent reproduction or also affect litter size. Female rats, chosen as a model species, were given three doses of either MAF-IMX294 or MAFIMX294P to compare anti-GnRH immune response and reproductive output up to 310 days posttreatment. Both formulations induced anti-GnRH antibody titres in 100% of rats and significantly impaired fertility compared to control animals. Following treatment with MAF-IMX294 and MAF-IMX294P 0 of 9 and 1 of 10 females respectively produced litters following the first mating challenge 45 days posttreatment, compared to 9 of 9 control animals. Across the whole 310 day study period 7 of 9 females from the MAF-IMX294 group and 10 of 10 females in the MAF-IMX294P group became fertile, producing at least one litter throughout six mating challenges. No significant differences were found between the two formulations in antibody titre response or duration of contraceptive effect, with an average time to first pregnancy of 166 days for MAFIMX294 and 177 days for MAF-IMX294P for all females that became fertile. Following treatment with MAF-IMX294 and MAF-IMX294P the first litter produced post-infertility in treated females was significantly smaller than in control animals. This indicates treatment with immunocontraceptives may induce an overall suppression of fecundity extending past an initial infertility effect. This increases the potential long-term impact of these immunocontraceptives in multiparous species such as commensal rodents
    corecore