194 research outputs found

    High-temperature creep of single-crystal nickel-based superalloy : microstructural changes and effects of thermal cycling

    Get PDF
    Creep tests were performed on MC2 single crystal superalloy at 950°C/200 MPa and 1150°C/80 MPa under isothermal and thermal cycling conditions with a tensile axis along the [0 0 1] direction. It was found that the thermal cycles strongly affect the creep behavior at 1150°C but not at 950°C. This was related to the repetitive precipitation and dissolution of small γ′ rafts at the higher temperature, as revealed by quantitative characterization of the γ/γ′ microstructure. The dislocation microstructure exhibits similar trends in all the tested conditions, with a very high activity of a[1 0 0]-type dislocations climbing through the rafts. Such climbing dislocations constitute a recovery process for the deformation active system. It appears that the density of a[1 0 0] dislocations, and not their climb velocity or diffusion rate, is the key parameter for the control of creep rate. The thermal cycles, which imply the creation and subsequent dissolution of rafts, provided new dislocations, which explains the acceleration of creep observed under such conditions

    Relativistic RPA plus phonon-coupling analysis of pygmy dipole resonances

    Get PDF
    The relativistic random-phase approximation (RRPA) plus phonon-coupling (PC) model is applied in the analysis of E1 strength distributions in 208^{208}Pb and 132^{132}Sn, for which data on pygmy dipole resonances (PDR) have recently been reported. The covariant response theory is fully consistent: the effective nuclear interaction NL3 is used both to determine the spectrum of single-nucleon Dirac states, and as the residual interaction which determines the collective phonon states in the relativistic RPA. It is shown that the picture of the PDR as a resonant oscillation of the neutron skin against the isospin saturated proton-neutron core, and with the corresponding RRPA state characterized by a coherent superposition of many neutron particle-hole configurations, remains essentially unchanged when particle-vibration coupling is included. The effect of two-phonon admixtures is a weak fragmentation and a small shift of PDR states to lower excitation energy. Even though the PDR calculated in the extended model space of ph⊗ph \otimesphonon configurations contains sizeable two-phonon admixtures, it basically retains a one-phonon character and its dynamics is not modified by the coupling to low-lying surface vibrations.Comment: 17 pages, 3 figures, 4 table

    Elastic and Raman scattering of 9.0 and 11.4 MeV photons from Au, Dy and In

    Full text link
    Monoenergetic photons between 8.8 and 11.4 MeV were scattered elastically and in elastically (Raman) from natural targets of Au, Dy and In.15 new cross sections were measured. Evidence is presented for a slight deformation in the 197Au nucleus, generally believed to be spherical. It is predicted, on the basis of these measurements, that the Giant Dipole Resonance of Dy is very similar to that of 160Gd. A narrow isolated resonance at 9.0 MeV is observed in In.Comment: 31 pages, 11 figure

    A FABRY-PEROT CAVITY FOR COMPTON POLARIMETRY

    Get PDF
    A new kind of Compton polarimeter using a resonant Fabry—Pe« rot cavity as a power buildup for the photon beam is proposed. A prototype of such a cavity is described, along with the results obtained in terms of source to be used in a Compton scattering polarimeter. ( 1998 Elsevier Science B.V. All rights reserved

    Submm/FIR astronomy in Antarctica: Potential for a large telescope facility

    Get PDF
    20International audiencePreliminary site testing datasets suggest that Dome C in Antarctica is one of the best sites on Earth for astronomical observations in the 200 to 500 micron regime, i.e. for far-infrared (FIR) and submillimetre (submm) astronomy. We present an overview of potential science cases that could be addressed with a large telescope facility at Dome C. This paper also includes a presentation of the current knowledge about the site characterics in terms of atmospheric transmission, stability, sky noise and polar constraints on telescopes. Current and future site testing campaigns are finally described

    CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND

    Full text link
    The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Delta_m^2 > 0.1 eV^2 and sin^2(2theta) > 0.05.Comment: 67 pages, 50 figures. Th. Lasserre thanks the European Research Council for support under the Starting Grant StG-30718

    White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND

    Full text link
    We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author lis

    Site testing for submillimetre astronomy at Dome C, Antarctica

    Get PDF
    Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile. In this context, we report on measurements of the sky opacity at 200 um over a period of three years at the French-Italian station, Concordia, at Dome C, Antarctica. We also present some solutions to the challenges of operating in the harsh polar environ- ment. Dome C offers exceptional conditions in terms of absolute atmospheric transmission and stability for submillimetre astron- omy. Over the austral winter the PWV exhibits long periods during which it is stable and at a very low level (0.1 to 0.3 mm). Higher values (0.2 to 0.8 mm) of PWV are observed during the short summer period. Based on observations over three years, a transmission of around 50% at 350 um is achieved for 75% of the time. The 200-um window opens with a typical transmission of 10% to 15% for 25% of the time. Dome C is one of the best accessible sites on Earth for submillimetre astronomy. Observations at 350 or 450 {\mu}m are possible all year round, and the 200-um window opens long enough and with a sufficient transparency to be useful. Although the polar environment severely constrains hardware design, a permanent observatory with appropriate technical capabilities is feasible. Because of the very good astronomical conditions, high angular resolution and time series (multi-year) observations at Dome C with a medium size single dish telescope would enable unique studies to be conducted, some of which are not otherwise feasible even from space
    • …
    corecore