407 research outputs found

    Triple flame structure and diffusion flame stabilization

    Get PDF
    The stabilization of diffusion ñames is studied using asymptotic techniques and numerical tools. The configuration studied corresponda to parallel streams of cold oxidizer and fuel initially separated by a splitter píate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter píate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distanees downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat reléase may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their re-sistance to turbulence is investigated by subjecting triple flames to different vortical configurations

    Effects of pressure gradients on turbulent premixed flames

    Get PDF
    The influence of a constant acceleration on a turbulent premixed flame is studied by direct numerical simulation. This acceleration induces a mean pressure gradient across the flame brush, leading to a modification of the turbulent flame structure due to differential buoyancy mechanisms between heavy cold fresh and light hot burnt gases. Such a pressure gradient may be encountered in practical applications in ducted flames. A favorable pressure gradient, i.e. the pressure decreases from unburnt to burnt gases, is found to decrease the flame wrinkling, the flame brush thickness, and the turbulent flame speed. A favorable pressure gradient also promotes counter-gradient turbulent transport. On the other hand, adverse pressure gradients tend to increase the flame brush thickness and turbulent flame speed, and promote classical gradient turbulent transport. The balance equation for the turbulent flux of the Favre averaged progress variable is also analyzed. The first results show that the fluctuating pressure term, cannot be neglected as generally assumed in models. Simple models assuming that a high mean pressure gradient may only be balanced by the cross-dissipation term seem too approximate. This analysis has to be continued to compare simulation data and closure schemes proposed for the transport equation. The analysis developed by Veynante et al.(1995) has been extended to imposed acceleration and mean pressure gradients. A simple model for the turbulent flux is proposed and validated from simulation data. Then, a modified criterion is derived to delineate between counter-gradient and gradient turbulent diffusion. In fact, counter-gradient diffusion may occur in most practical applications, especially for ducted flames

    Réponse au comment de Hal intitulé " Commentaire de " Transformation thermodynamics : cloaking and concentrating heat flux ", hal-00741585, version 1 - 14 octobre 2012 "

    No full text
    Reply to comment on " Transformation thermodynamics : cloaking and concentrating heat flux ", hal-00741585, version 1 - 14 octobre 2012

    Développement d'une modélisation basée sur la tabulation de schémas cinétique complexe pour la simulation aux grandes échelles (LES) de l'autoflammation et de la combustion turbulente non prémélangée dans les moteurs à pistons

    Get PDF
    Dans un contexte où les questions environnementales et énergétiques ont une importance capitale, les constructeurs automobiles sont fortement poussés à développer des moteurs à combustion interne toujours plus économes et moins polluants. Pour le développement de procédés de combustion innovants et l'amélioration de leur compréhension, la simulation aux grandes échelles apparaît comme un outil prometteur. Ce travail de thèse traite du développement et de la validation d'un modèle pour la simulation aux grandes échelles de la combustion Diesel. Le modèle ADF-PCM, basé sur la tabulation de flammes de diffusion approchées auto-inflammantes étirées et permettant la prise en compte d'une cinétique chimique détaillée, est utilisé dans ces travaux. Le modèle ADF est tout d'abord introduit. Il permet d'approximer des flammes de diffusion laminaires à partir de flammelettes dont les termes chimiques proviennent de calculs de réacteurs homogènes. La première étape de ces travaux consiste à valider ces flammes de diffusion approchées dans des configurations proches de celles observées dans les moteurs Diesel. Le modèle ADF-PCM, initialement développé dans un formalisme RANS, est ensuite étendu à un formalisme LES pour des écoulements diphasiques et intégré dans le code LES compressible AVBP. Un modèle de stratification en température ainsi que les termes de couplage avec la phase liquide décrite par un formalisme Eulérien sont développés. Le modèle ADF-PCM est ensuite validé sur deux expériences de sprays Diesel en enceinte fermée. Il permet une bonne reproduction des résultats expérimentaux en termes de délai d'auto-inflammation, de dégagement de chaleur et de hauteur d'accrochage de la flamme. Les prédictions du modèle ADF-PCM sont ensuite comparées avec celles d'autres modèles faisant différentes hypothèses simplificatrices par rapport à la structure de flamme et la stratification en sous-maille de la fraction de mélange. Les résultats obtenus à l'aide de ces différents modèles soulignent la nécessité de la prise en compte de ces effets, même pour des résolutions spatiales fines. Finalement, des comparaisons entre les résultats expérimentaux et la simulation sont réalisées avec le modèle ADF-PCM pour différents taux de gaz recirculants. Celui-ci montre une reproduction qualitative de l'effet des gaz recirculants sur la combustion.In a context where environmental and energetic issues are of major importance, car manufacturer are pushed toward developing more and more efficient vehicle with less pollutant emissions. To develop new combustion processes and improve their understanding, Large-Eddy Simulation appears as a promising tool. This thesis deals with the development and the validation of a model for Large-Eddy Simulation of Diesel combustion. The ADF-PCM model, based on the tabulation of strained approximated diffusion flames which allow to take into account detailed chemical schemes, is used. First, the ADF model is introduced. It approximates laminar diffusion flames by flamelets for which the chemical terms are extracted from a look-up table based on homogeneous reactors. The first step of this work consists in the validation of these approximated diffusion flames in Diesel conditions. The ADF-PCM model, initially formulated in a RANS formalism is extended to Large-Eddy Simulation of two phase flows and implemented in the AVBP LES compressible solver. A temperature stratification model is developed, as well as coupling terms for the liquid phase described by an Eulerian formalism. The ADF-PCM model is then assessed and validated on two experiments of Diesel liquid sprays injected into a constant volume chambers. It accurately predicts experimental _ndings in terms of auto-ignition delay, heat release rate and lift-off length. ADF-PCM results are then compared with those of other models considering different simplifying assumptions concerning flame structure or subgrid-scale mixture fraction stratification. The results indicate the necessity to consider these effects, even for fine grids. Finally, the capacity of the ADF-PCM approach to reproduce the influence of exhaust gas recirculation over combustion is assessed. Comparisons between experimental and simulation results indicate a qualitative reproduction of exhaust gas recirculation impact over combustion.CHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF

    The coupling between flame surface dynamics and species mass conservation in premixed turbulent combustion

    Get PDF
    Current flamelot models based on a description of the flame surface dynamics require the closure of two inter-related equations: a transport equation for the mean reaction progress variable, (tilde)c, and a transport equation for the flame surface density, Sigma. The coupling between these two equations is investigated using direct numerical simulations (DNS) with emphasis on the correlation between the turbulent fluxes of (tilde)c, bar(pu''c''), and Sigma, (u'')(sub S)Sigma. Two different DNS databases are used in the present work: a database developed at CTR by A. Trouve and a database developed by C. J. Rutland using a different code. Both databases correspond to statistically one-dimensional premixed flames in isotropic turbulent flow. The run parameters, however, are significantly different, and the two databases correspond to different combustion regimes. It is found that in all simulated flames, the correlation between bar(pu''c'') and (u'')(sub S)Sigma is always strong. The sign, however, of the turbulent flux of (tilde)c or Sigma with respect to the mean gradients, delta(tilde)c/delta(x) or delta(Sigma)/delta(x), is case-dependent. The CTR database is found to exhibit gradient turbulent transport of (tilde)c and Sigma, whereas the Rutland DNS features counter-gradient diffusion. The two databases are analyzed and compared using various tools (a local analysis of the flow field near the flame, a classical analysis of the conservation equation for (tilde)(u''c''), and a thin flame theoretical analysis). A mechanism is then proposed to explain the discrepancies between the two databases and a preliminary simple criterion is derived to predict the occurrence of gradient/counter-gradient turbulent diffusion

    Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates

    Get PDF
    This work presents a new approach for premixed turbulent combustion modeling based on convolutional neural networks (CNN).1 We first propose a framework to reformulate the problem of subgrid flame surface density estimation as a machine learning task. Data needed to train the CNN is produced by direct numerical simulations (DNS) of a premixed turbulent flame stabilized in a slot-burner configuration. A CNN inspired from a U-Net architecture is designed and trained on the DNS fields to estimate subgrid-scale wrinkling. It is then tested on an unsteady turbulent flame where the mean inlet velocity is increased for a short time and the flame must react to a varying turbulent incoming flow. The CNN is found to efficiently extract the topological nature of the flame and predict subgrid-scale wrinkling, outperforming classical algebraic models

    Investigation of the ignition and combustion processes of a dual-fuel spray under diesel-like conditions using computational fluid dynamics (CFD) modeling

    Full text link
    Recent research activities in the field of diesel engines have shown the potential to reduce pollutant emissions and improve the thermal efficiency by controlling the fuel reactivity. However, understanding the impact of blending fuels with different physical and especially chemical properties on diesel-like spray mixing and combustion processes is still a challenge. Since the experimental techniques are still far from providing detailed temporal and spatial information about local spray conditions, computational fluid dynamics (CFD) modeling tools have become the key source of information for investigating the characteristics of these dual-fuel sprays. In this frame, the present research focuses on modeling a dual-fuel spray in diesel-like conditions, comparing different gasoline and diesel blends in terms of ignition characteristics and flame structure. The results confirm the suitability of the state of the art computational CFD modeling tools for reproducing the complex phenomena associated to dual-fuel sprays. Moreover, the important benefits provided by dual-fuel blends, considering the expected reduction in pollutant emissions as a consequence of the differences observed in terms of flame structure, are confirmed.The authors thank Dr. Jose Manuel Pastor for his support during this work and for sharing his profound knowledge and experience. Support for this research was provided by the Universitat Politecnica de Valencia inside the program Programas de Apoyo a la I + D + I, Primeros proyectos de investigacion (reference PAID-06-11 2033) and by the Ministerio de Ciencia e Innovacion inside the VeLoSoot project (TRA 2008_06448), which is gratefully acknowledged.López Sánchez, JJ.; Novella Rosa, R.; García Martínez, A.; Winklinger, JF. (2011). Investigation of the ignition and combustion processes of a dual-fuel spray under diesel-like conditions using computational fluid dynamics (CFD) modeling. Mathematical and Computer Modelling. 57:1897-1906. https://doi.org/10.1016/j.mcm.2011.12.030S189719065

    The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed

    Full text link
    (Abridged) Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S_T, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S_L, resulting in the Damkohler number Da = 0.05. Here we show that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S_T is predominantly determined by the increase of the flame surface area, A_T, caused by turbulence. (4) The observed increase of S_T relative to S_L exceeds the corresponding increase of A_T relative to the surface area of the planar laminar flame, on average, by ~14%, varying from only a few percent to ~30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature, or "cusps." (6) The local flame speed in the cusps substantially exceeds its laminar value, which results in a disproportionately large contribution of cusps to S_T compared with the flame surface area in them. (7) A criterion is established for transition to the regime significantly influenced by cusp formation. In particular, at Karlovitz numbers Ka > 20, flame collisions provide an important mechanism controlling S_T, in addition to the increase of A_T by large-scale motions and the potential enhancement of diffusive transport by small-scale turbulence.Comment: 44 pages, 20 figures; published in Combustion and Flam
    corecore