60 research outputs found

    Protein materials as sustainable non- and minimally invasive strategies for biomedical applications

    Get PDF
    Protein-based materials have found applications in a wide range of biomedical fields because of their biocompatibility, biodegradability and great versatility. Materials of different physical forms including particles, hydrogels, films, fibers and microneedles have been fabricated e.g. as carriers for drug delivery, factors to promote wound healing and as structural support for the generation of new tissue. This review aims at providing an overview of the current scientific knowledge on protein-based materials, and selected preclinical and clinical studies will be reviewed in depth as examples of the latest progress within the field of protein-based materials, specifically focusing on non- and minimally invasive strategies mainly for topical application

    Quantum erasure within the Optical Stern-Gerlach Model

    Full text link
    In the optical Stern-Gerlach effect the two branches in which the incoming atomic packet splits up can display interference pattern outside the cavity when a field measurement is made which erases the which-way information on the quantum paths the system can follow. On the contrary, the mere possibility to acquire this information causes a decoherence effect which cancels out the interference pattern. A phase space analysis is also carried out to investigate on the negativity of the Wigner function and on the connection between its covariance matrix and the distinguishability of the quantum paths.Comment: 7 pages, 3 figure

    Advanced microscopy analysis of the micro-nanoscale architecture of human menisci

    Get PDF
    The complex inhomogeneous architecture of the human meniscal tissue at the micro and nano scale in the absence of artefacts introduced by sample treatments has not yet been fully revealed. The knowledge of the internal structure organization is essential to understand the mechanical functionality of the meniscus and its relationship with the tissue’s complex structure. In this work, we investigated human meniscal tissue structure using up-to-date non-invasive imaging techniques, based on multiphoton fluorescence and quantitative second harmonic generation microscopy complemented with Environmental Scanning Electron Microscopy measurements. Observations on 50 meniscal samples extracted from 6 human menisci (3 lateral and 3 medial) revealed fundamental features of structural morphology and allowed us to quantitatively describe the 3D organisation of elastin and collagen fibres bundles. 3D regular waves of collagen bundles are arranged in “honeycomb-like” cells that are comprised of pores surrounded by the collagen and elastin network at the micro-scale. This type of arrangement propagates from macro to the nanoscale

    The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation

    Get PDF
    Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al

    Shear Wave Splitting Analysis to Estimate Fracture Orientation and Frequency Dependent Anisotropy

    Get PDF
    Shear wave splitting is a well-known method for indication of orientation, radius, and length of fractures in subsurface layers. In this paper, a three component near offset VSP data acquired from a fractured sandstone reservoir in southern part of Iran was used to analyse shear wave splitting and frequency-dependent anisotropy assessment. Polarization angle obtained by performing rotation on radial and transverse components of VSP data was used to determine the direction of polarization of fast shear wave which corresponds to direction of fractures. It was shown that correct implementation of shear wave splitting analysis can be used for determination of fracture direction. During frequency- dependent anisotropy analysis, it was found that the time delays in shear- waves decrease as the frequency increases. It was clearly demonstrated throughout this study that anisotropy may have an inverse relationship with frequency. The analysis presented in this paper complements the studied conducted by other researchers in this field of research

    A Stress Induced Source of Phonon Bursts and Quasiparticle Poisoning

    Full text link
    The performance of superconducting qubits is degraded by a poorly characterized set of energy sources breaking the Cooper pairs responsible for superconductivity, creating a condition often called "quasiparticle poisoning." Recently, a superconductor with one of the lowest average quasiparticle densities ever measured exhibited quasiparticles primarily produced in bursts which decreased in rate with time after cooldown. Similarly, several cryogenic calorimeters used to search for dark matter have also observed an unknown source of low-energy phonon bursts that decrease in rate with time after cooldown. Here, we show that a silicon crystal glued to its holder exhibits a rate of low-energy phonon events that is more than two orders of magnitude larger than in a functionally identical crystal suspended from its holder in a low-stress state. The excess phonon event rate in the glued crystal decreases with time since cooldown, consistent with a source of phonon bursts which contributes to quasiparticle poisoning in quantum circuits and the low-energy events observed in cryogenic calorimeters. We argue that relaxation of thermally induced stress between the glue and crystal is the source of these events, and conclude that stress relaxation contributes to quasiparticle poisoning in superconducting qubits and the athermal phonon background in a broad class of rare-event searches.Comment: 13 pages, 6 figures. W. A. Page and R. K. Romani contributed equally to this work. Correspondence should be addressed to R. K. Roman

    Vasomotion and Neurovascular Coupling in the Visual Thalamus In Vivo

    Get PDF
    Spontaneous contraction and relaxation of arteries (and in some instances venules) has been termed vasomotion and has been observed in an extensive variety of tissues and species. However, its functions and underlying mechanisms are still under discussion. We demonstrate that in vivo spectrophotometry, measured simultaneously with extracellular recordings at the same locations in the visual thalamus of the cat, reveals vasomotion, measured as an oscillation (0.14hz) in the recorded oxyhemoglobin (OxyHb) signal, which appears spontaneously in the microcirculation and can last for periods of hours. During some non-oscillatory periods, maintained sensory stimulation evokes vasomotion lasting ∼30s, resembling an adaptive vascular phenomenon. This oscillation in the oxyhaemoblobin signal is sensitive to pharmacological manipulation: it is inducible by chloralose anaesthesia and it can be temporarily blocked by systemic administration of adrenaline or acetylcholine (ACh). During these oscillatory periods, neurovascular coupling (i.e. the relationship between local neural activity and the rate of blood supply to that location) appears significantly altered. This raises important questions with regard to the interpretation of results from studies currently dependent upon a linear relationship between neural activity and blood flow, such as neuroimaging

    Extrinsic Fluorescent Dyes as Tools for Protein Characterization

    Get PDF
    Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization
    corecore