488 research outputs found

    Radiography registration for mosaic tomography

    Get PDF
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQA hybrid method of stitching X-ray computed tomography (CT) datasets is proposed and the feasibility to apply the scheme in a synchrotron tomography beamline with micrometre resolution is shown. The proposed method enables the field of view of the system to be extended while spatial resolution and experimental setup remain unchanged. The approach relies on taking full tomographic datasets at different positions in a mosaic array and registering the frames using Fourier phase correlation and a residue-based correlation. To ensure correlation correctness, the limits for the shifts are determined from the experimental motor position readouts. The masked correlation image is then minimized to obtain the correct shift. The partial datasets are blended in the sinogram space to be compatible with common CT reconstructors. The feasibility to use the algorithm to blend the partial datasets in projection space is also shown, creating a new single dataset, and standard reconstruction algorithms are used to restore high-resolution slices even with a small number ofprojections.A hybrid method of stitching X-ray computed tomography (CT) datasets is proposed and the feasibility to apply the scheme in a synchrotron tomography beamline with micrometre resolution is shown. The proposed method enables the field of view of the system to be extended while spatial resolution and experimental setup remain unchanged. The approach relies on taking full tomographic datasets at different positions in a mosaic array and registering the frames using Fourier phase correlation and a residue-based correlation. To ensure correlation correctness, the limits for the shifts are determined from the experimental motor position readouts. The masked correlation image is then minimized to obtain the correct shift. The partial datasets are blended in the sinogram space to be compatible with common CT reconstructors. The feasibility to use the algorithm to blend the partial datasets in projection space is also shown, creating a new single dataset, and standard reconstruction algorithms are used to restore high-resolution slices even with a small number of projections.243686694CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQSem informaçã

    The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy

    Full text link
    NIKA2 (New IRAM KID Array 2) is a camera dedicated to millimeter wave astronomy based upon kilopixel arrays of Kinetic Inductance Detectors (KID). The pathfinder instrument, NIKA, has already shown state-of-the-art detector performance. NIKA2 builds upon this experience but goes one step further, increasing the total pixel count by a factor ∌\sim10 while maintaining the same per pixel performance. For the next decade, this camera will be the resident photometric instrument of the Institut de Radio Astronomie Millimetrique (IRAM) 30m telescope in Sierra Nevada (Spain). In this paper we give an overview of the main components of NIKA2, and describe the achieved detector performance. The camera has been permanently installed at the IRAM 30m telescope in October 2015. It will be made accessible to the scientific community at the end of 2016, after a one-year commissioning period. When this happens, NIKA2 will become a fundamental tool for astronomers worldwide.Comment: Proceedings of the 16th Low Temperature Detectors workshop. To be published in the Journal of Low Temperature Physics. 8 pages, 4 figures, 1 tabl

    The PLASMONX Project for advanced beam physics experiments

    Get PDF
    The Project PLASMONX is well progressing into its design phase and has entered as well its second phase of procurements for main components. The project foresees the installation at LNF of a Ti:Sa laser system (peak power > 170 TW), synchronized to the high brightness electron beam produced by the SPARC photo-injector. The advancement of the procurement of such a laser system is reported, as well as the construction plans of a new building at LNF to host a dedicated laboratory for high intensity photon beam experiments (High Intensity Laser Laboratory). Several experiments are foreseen using this complex facility, mainly in the high gradient plasma acceleration field and in the field of mono- chromatic ultra-fast X-ray pulse generation via Thomson back-scattering. Detailed numerical simulations have been carried out to study the generation of tightly focused electron bunches to collide with laser pulses in the Thomson source: results on the emitted spectra of X-rays are presented

    Status of the Super-B factory Design

    Full text link
    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036^{36} cm−2^{-2} sec−1^{-1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the ΄\Upsilon(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low ÎČy⋆\beta_y^\star without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications

    Wnt5a Drives an Invasive Phenotype in Human Glioblastoma Stem-like Cells

    Get PDF
    Brain invasion by glioblastoma determines prognosis, recurrence, and lethality in patients, but no master factor coordinating the invasive properties of glioblastoma has been identified. Here we report evidence favoring such a role for the noncanonical WNT family member Wnt5a. We found the most invasive gliomas to be characterized by Wnt5a overexpression, which correlated with poor prognosis and also discriminated infiltrating mesenchymal glioblastoma from poorly motile proneural and classical glioblastoma. Indeed, Wnt5a overexpression associated with tumor-promoting stem-like characteristics (TPC) in defining the character of highly infiltrating mesenchymal glioblastoma cells (Wnt5aHigh). Inhibiting Wnt5a in mesenchymal glioblastoma TPC suppressed their infiltrating capability. Conversely, enforcing high levels of Wnt5a activated an infiltrative, mesenchymal-like program in classical glioblastoma TPC and Wnt5aLow mesenchymal TPC. In intracranial mouse xenograft models of glioblastoma, inhibiting Wnt5a activity blocked brain invasion and increased host survival. Overall, our results highlight Wnt5a as a master regulator of brain invasion, specifically TPC, and they provide a therapeutic rationale to target it in patients with glioblastoma

    Discovering temporal regularities in retail customers’ shopping behavior

    Get PDF
    In this paper we investigate the regularities characterizing the temporal purchasing behavior of the customers of a retail market chain. Most of the literature studying purchasing behavior focuses on what customers buy while giving few importance to the temporal dimension. As a consequence, the state of the art does not allow capturing which are the temporal purchasing patterns of each customers. These patterns should describe the customerĂą\u80\u99s temporal habits highlighting when she typically makes a purchase in correlation with information about the amount of expenditure, number of purchased items and other similar aggregates. This knowledge could be exploited for different scopes: set temporal discounts for making the purchases of customers more regular with respect the time, set personalized discounts in the day and time window preferred by the customer, provide recommendations for shopping time schedule, etc. To this aim, we introduce a framework for extracting from personal retail data a temporal purchasing profile able to summarize whether and when a customer makes her distinctive purchases. The individual profile describes a set of regular and characterizing shopping behavioral patterns, and the sequences in which these patterns take place. We show how to compare different customers by providing a collective perspective to their individual profiles, and how to group the customers with respect to these comparable profiles. By analyzing real datasets containing millions of shopping sessions we found that there is a limited number of patterns summarizing the temporal purchasing behavior of all the customers, and that they are sequentially followed in a finite number of ways. Moreover, we recognized regular customers characterized by a small number of temporal purchasing behaviors, and changing customers characterized by various types of temporal purchasing behaviors. Finally, we discuss on how the profiles can be exploited both by customers to enable personalized services, and by the retail market chain for providing tailored discounts based on temporal purchasing regularity

    Content and Feedback Analysis of YouTube Videos: Football Clubs and Fans as Brand Communities

    Get PDF
    The use of Web 2.0 tools has been transforming the interaction between companies and their clients, especially for those that are selling emotional products. Consumers are generating and sharing contents concerning their favourite products on the web. Even if this process has been widely acknowledged, only a few studies have been specifically devoted to the analysis of both the contents and the feedback the consumers receive from other users. This article analyzes the online presence of sport brands through contents that are generated by sport clubs (official contents) and their fans (User Generated Content, UGC) on YouTube. After a description and classification of video contents, it examines the factors that influence the performance of the videos in terms of passive (videos views) and active behaviour (any kinds of interaction with videos) among the viewers. In order to carry out this analysis, 125 YouTube channels were considered thereby accounting for a total of 375 videos. Results show that official contents are those preferred by the users/consumers and that if the video displays a passive/purely informative content, the chance of getting an active behaviour from the users tends to decrease. These findings may help companies manage their online presence, creating awareness about contents and information that should be spread and shared on the web

    Bone health and body composition in transgender adults before gender-affirming hormonal therapy: data from the COMET study

    Get PDF
    Purpose: Preliminary data suggested that bone mineral density (BMD) in transgender adults before initiating gender-affirming hormone therapy (GAHT) is lower when compared to cisgender controls. In this study, we analyzed bone metabolism in a sample of transgender adults before GAHT, and its possible correlation with biochemical profile, body composition and lifestyle habits (i.e., tobacco smoke and physical activity). Methods: Medical data, smoking habits, phospho-calcic and hormonal blood tests and densitometric parameters were collected in a sample of 125 transgender adults, 78 Assigned Females At Birth (AFAB) and 47 Assigned Males At Birth (AMAB) before GAHT initiation and 146 cisgender controls (57 females and 89 males) matched by sex assigned at birth and age. 55 transgender and 46 cisgender controls also underwent a complete body composition evaluation and assessment of physical activity using the International Physical Activity Questionnaire (IPAQ). Results: 14.3% of transgender and 6.2% of cisgender sample, respectively, had z-score values < -2 (p = 0.04). We observed only lower vitamin D values in transgender sample regarding biochemical/hormonal profile. AFAB transgender people had more total fat mass, while AMAB transgender individuals had reduced total lean mass as compared to cisgender people (53.94 ± 7.74 vs 58.38 ± 6.91, p < 0.05). AFAB transgender adults were more likely to be active smokers and tend to spend more time indoor. Fat Mass Index (FMI) was correlated with lumbar and femur BMD both in transgender individuals, while no correlations were found between lean mass parameters and BMD in AMAB transgender people. Conclusions: Body composition and lifestyle factors could contribute to low BMD in transgender adults before GAHT

    High brightness electron beam emittance evolution measurements in an rf photoinjector

    Get PDF
    The new generation of linac injectors driving free electron lasers in the self-amplified stimulated emission (SASE-FEL) regime requires high brightness electron beams to generate radiation in the wavelength range from UV to x rays. The choice of the injector working point and its matching to the linac structure are the key factors to meet this requirement. An emittance compensation scheme presently applied in several photoinjectors worldwide is known as the "Ferrario" working point. In spite of its great importance there was, so far, no direct measurement of the beam parameters, such as emittance, transverse envelope, and energy spread, in the region downstream the rf gun and the solenoid of a photoinjector to validate the effectiveness of this approach. In order to fully characterize the beam dynamics with this scheme, an innovative beam diagnostic device, the emittance meter, consisting of a movable emittance measurement system, has been designed and built. With the emittance meter, measurements of the main beam parameters in both transverse phase spaces can be performed in a wide range of positions downstream the photoinjector. These measurements help in tuning the injector to optimize the working point and provide an important benchmark for the validation of simulation codes. We report the results of these measurements in the SPARC photoinjector and, in particular, the first experimental evidence of the double minimum in the emittance oscillation, which provides the optimized matching to the SPARC linac. © 2008 The American Physical Society
    • 

    corecore