3,070 research outputs found
On the geometry of entangled states
The basic question that is addressed in this paper is finding the closest
separable state for a given entangled state, measured with the Hilbert Schmidt
distance. While this problem is in general very hard, we show that the
following strongly related problem can be solved: find the Hilbert Schmidt
distance of an entangled state to the set of all partially transposed states.
We prove that this latter distance can be expressed as a function of the
negative eigenvalues of the partial transpose of the entangled state, and show
how it is related to the distance of a state to the set of positive partially
transposed states (PPT-states). We illustrate this by calculating the closest
biseparable state to the W-state, and give a simple and very general proof for
the fact that the set of W-type states is not of measure zero. Next we show
that all surfaces with states whose partial transposes have constant minimal
negative eigenvalue are similar to the boundary of PPT states. We illustrate
this with some examples on bipartite qubit states, where contours of constant
negativity are plotted on two-dimensional intersections of the complete state
space.Comment: submitted to Journal of Modern Optic
Tree tensor networks and entanglement spectra
A tree tensor network variational method is proposed to simulate quantum
many-body systems with global symmetries where the optimization is reduced to
individual charge configurations. A computational scheme is presented, how to
extract the entanglement spectra in a bipartite splitting of a loopless tensor
network across multiple links of the network, by constructing a matrix product
operator for the reduced density operator and simulating its eigenstates. The
entanglement spectra of 2 x L, 3 x L and 4 x L with either open or periodic
boundary conditions on the rungs are studied using the presented methods, where
it is found that the entanglement spectrum depends not only on the subsystem
but also on the boundaries between the subsystems.Comment: 16 pages, 16 figures (20 PDF figures
General Monogamy Inequality for Bipartite Qubit Entanglement
We consider multipartite states of qubits and prove that their bipartite
quantum entanglement, as quantified by the concurrence, satisfies a monogamy
inequality conjectured by Coffman, Kundu, and Wootters. We relate this monogamy
inequality to the concept of frustration of correlations in quantum spin
systems.Comment: Fixed spelling mistake. Added references. Fixed error in
transformation law. Shorter and more explicit proof of capacity formula.
Reference added. Rewritten introduction and conclusion
Stochastic Matrix Product States
The concept of stochastic matrix product states is introduced and a natural
form for the states is derived. This allows to define the analogue of Schmidt
coefficients for steady states of non-equilibrium stochastic processes. We
discuss a new measure for correlations which is analogous to the entanglement
entropy, the entropy cost , and show that this measure quantifies the bond
dimension needed to represent a steady state as a matrix product state. We
illustrate these concepts on the hand of the asymmetric exclusion process
Approaching the Kosterlitz-Thouless transition for the classical XY model with tensor networks
We apply variational tensor-network methods for simulating the Kosterlitz-Thouless phase transition in the classical two-dimensional XY model. In particular, using uniform matrix product states (MPS) with non-Abelian O(2) symmetry, we compute the universal drop in the spin stiffness at the critical point. In the critical low-temperature regime, we focus on the MPS entanglement spectrum to characterize the Luttinger-liquid phase. In the high-temperature phase, we confirm the exponential divergence of the correlation length and estimate the critical temperature with high precision. Our MPS approach can be used to study generic two-dimensional phase transitions with continuous symmetries
Binegativity and geometry of entangled states in two qubits
We prove that the binegativity is always positive for any two-qubit state. As
a result, as suggested by the previous works, the asymptotic relative entropy
of entanglement in two qubits does not exceed the Rains bound, and the
PPT-entanglement cost for any two-qubit state is determined to be the
logarithmic negativity of the state. Further, the proof reveals some
geometrical characteristics of the entangled states, and shows that the partial
transposition can give another separable approximation of the entangled state
in two qubits.Comment: 5 pages, 3 figures. I made the proof more transparen
Superpressure balloon flights from Christchurch, New Zealand, July 1968 - December 1969
Strain gages on superpressure balloon flights from Christchurch, New Zealand - Jul. 1968 to Dec. 196
A new family of matrix product states with Dzyaloshinski-Moriya interactions
We define a new family of matrix product states which are exact ground states
of spin 1/2 Hamiltonians on one dimensional lattices. This class of
Hamiltonians contain both Heisenberg and Dzyaloshinskii-Moriya interactions but
at specified and not arbitrary couplings. We also compute in closed forms the
one and two-point functions and the explicit form of the ground state. The
degeneracy structure of the ground state is also discussed.Comment: 15 pages, 1 figur
Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order
The Lieb-Robinson bound states that local Hamiltonian evolution in nonrelativistic quantum mechanical theories gives rise to the notion of an effective light cone with exponentially decaying tails. We discuss several consequences of this result in the context of quantum information theory. First, we show that the information that leaks out to spacelike separated regions is negligible and that there is a finite speed at which correlations and entanglement can be distributed. Second, we discuss how these ideas can be used to prove lower bounds on the time it takes to convert states without topological quantum order to states with that property. Finally, we show that the rate at which entropy can be created in a block of spins scales like the boundary of that block
- …
