superperssure

VINCENT E. RALLY
A. BREWSTER RICKEL.

MARCEL A. VERSTRAETE.

May 1970

 NATIONAL CENTER FOR ATMOSPHERIC RESEARCH Boulder, Colorado

Superpreswure
 Balloon Flights from
 Christchurch, Now wealand July 1968-December 1968

VINCENT E. LALLY
A. BREWSTER RICKEL
MARCEL A. VERSTRAETE

May 1970

This report contains flight summaries and analyses of Phase III GHOST balloon flights in the period 1 July 1968 to 31 December 1969. These flights were launched from Christchurch, New Zealand, and from an auxiliary site in the South Pacific. Appendices I and II discuss superpressure balloon flights below the freezing level and flights of balloons equipped with strain gages.

During the 18 -month period of Phase III, 79 flights were made under the auspices of the New Zealand Meteorological Service, the Environmental Science Services Administration, the National Aeronautics and Space Administration, and the National Science Foundation. The flight program was conducted by the National Center for Atmospheric Research.

We are grateful to the volunteer tracking stations in the southern hemisphere without whose assistance our flight program would not have been possible. We thank the meteorological services, governmental agencies, and trackers who operated the stiations at McMurdo Station, Antarctica; Buenos Aires, Argentina; Melbourne, Australia; Rio de Janeiro, Brazil; San Rafael, California; Plaisance, Mauritius; Huancayo, Peru; and Pretoria, South Africa. Our special thanks go to the New Zealand Meteorological Service and to its staff which mans the tracking station in Christchurch.

Previous flight data and analyses have been published in NCAR Technical Notes TN-28 (June 1967) and TN-38 (February 1969). Both documents are available from the National Center for Atmospheric Research, Boulder, Colorado, 80302.

Analyses of trajectory data for GHOST flights are being performed by Samuel B. Solot and Aubrey Schumann at the National Center for Atmospheric Research.

CONTENTS

Foreword iii
ANALYSIS OF FLIGHT RESULTS 1
SUMMARY OF FLIGHTS BY LEVEL 5
GHOST BALLOON FLIGHT SUMMARY - NOTES 7
GHOST BALLOON FLIGHT SUMMARIES 9
Appendices
I. Superpressure Flights at Low Altitudes 93
II. Balloon Strain Data Analyses 99

ANALYSIS OF FLIGHT RESULTS

1. FLIGHTS AT 30 km (10 mb)

One flight of a polyethylene balloon was made at this level. As reported in NCAR TN-38, the balloon probably suffered ascent damage which caused its descent on the evening of the first day. However, Mylar superpressure spheres have been used successfully at this level by other agencies, demonstrating that GHOS'r-type packages can be flown without difficulty.

2. FLIGHTS AT $24 \mathrm{~km}(30 \mathrm{mb})$

Five flights were made from Christchurch at this level. One balloon burst during ascent, and two others developed leaks. Of these two, one was probably damaged during ascent and flew for only five days; the other flew for 141 days. The fourth balloon flew without problems for 172 days and then came down abruptly, presumably from sudden balloon failure. The fifth balloon was launched in late December 1969, and was last heard on 23 February 1970, its sixtieth day of flight. Average life for these flights was 81 days, not counting the balloon that burst during ascent.

Flights from Ascension Island at 30 and 50 mb showed that balloons can suffer damage from too~rapid ascent through the tropopause. To control the rate of ascent of high-level balloons a technique of ballasting was developed at Christchurch and used successfully. The four balloons launched from Christchurch, whose average life was 81 days, were equipped with ascent ballast. The balloon that burst during ascent employed only a drag chute.

3. FLIGHTS AT $16 \mathrm{~km}(100 \mathrm{mb})$

Eleven flights were made at this level; eight of these were flown in December 1969 for J. Blamont of France. Of the remaining three, one suffered the only known electronics failure fir this period. The
second balloon failed after 89 days. The third balloon, equipped with ascent ballast, had logged 258 days as of 1 April 1970.
4. ELIGHTS AT $12 \mathrm{~km}(200 \mathrm{mb})$

Thirteen flights were made at this level. Two balloons had metalized Mylar top caps and flew for four months each. The remaining eleven were capless; four of these had an average life of 110 days, and one stayed aloft for 225 days. Four others remained aloft for a month or less, one failing two hours after reaching altitude. The remaining two balloons were launched during November-December 1969 and were still flying as of 1 January 1970. Icing appears to be the major obstacle to flight at this level.
5. FLIGHT AT $9 \mathrm{~km}(300 \mathrm{mb})$

Only one flight was made at this level; its termination after 60 days of flight was probably caused by frost accumulation.
6. FLIGHT AT $7.2 \mathrm{~km}(400 \mathrm{mb})$

Major emphasis was placed on flight testing at this level. Twenty-six balloons were flown and the average flight life was 12 days. Only two balloons are known to have failed, one from launch damage. Fourteen of the balloons had metalized Mylar top caps: average life was 12 days, maximum life was 68 days, and minimum life was 3 days. The remaining 12 balloons were not capped: average life was 12 days, maximum life was 53 days and minimum life was 4 days. These figures indicate that icing, rather than frosting under high clouds, was the major cause of flight termination. The use of top caps does not increase flight life at this level.

7. FIIGHT AT $2 \mathrm{~km}(800 \mathrm{mb})$

Eleven flights were made at this level; average life was only four days, and maximum life was nine days. All balloons but one (which floated 500 m higher) were reinforced cylindrical balloons
carrying 12% overpressure. The advantage of the cylindricai shape over the spherical shape is that less water should adhere to the balloon surface. Water or ice were nevertheless the primary causes of flight termination. All balloons were wax-coated and polished. Water repellents Eor balloon surfaces are discussed in Appendix I.
8. FLIGHTS AT OR BELOW 1 km (9.00 mb)

Ten flights were made at this level, three from Christchurch and seven from Johnston Island ($169^{\circ} 31^{\prime} \mathrm{W}, 16^{\circ} 44^{\prime} \mathrm{N}$). All balloons were cylindrical and were treated with water repellents. Their average life was less than two days. One flight terminated when the balloon came inland and was caught in high-country bushes. Another flight (reported in Appendix I) was launched into a heavy rainstorm. Excessive water loading on the balloons terminated all of the other flights, including a 300 m float-altitude flight employing a drag line.

SUMMARY OF ELIGHTS BY LEVEL

[^0]| Level
 (mb) | Flight number | $\begin{gathered} \text { Days } \\ \text { of } \end{gathered}$
 flight | Probable cause of termination | Strain gage |
| :---: | :---: | :---: | :---: | :---: |
| 400 | 178402 NK | 24 | Ice | X |
| | ${ }^{*}$ *187404 F | 3 | Ice | |
| | *189406 W | 8 | Launch damage | |
| | 190407 B | 5 | Ice | |
| | *192401 K | 9 | Ice | |
| | 193403 H | 53 | Ice | |
| | *194406 J | 5 | Ice | |
| | 198401 W | 8 | Ice | |
| | *199402 C | 8 | Ice | |
| | 200404 V | 8 | Ice | |
| | *201407 I | 7 | Ice | |
| | 202406 K | 4 | Ice | |
| | *203403 M | 4 | Ice | |
| | 204405 N | 4 | Ice | |
| | *205404 Y | 7 | Ice | |
| 300 | 188285/2 R/X | 60° | Frost | |
| 200 | *156224 UF | 126 | Ice | |
| | *157228 LU | 121 | Ice | X |
| | 158226 DC | 107 | Leak | X |
| | 159203 L | 107 | - | |
| | 160206 BK | 118 | Ice | X |
| | 161204 AR-H | 107 | Ice | X |
| | 191225 GL | 225 | Ice | |
| | 197184/8/2 F/P/U | 39 | - | |
| | 206223 L | 12 | - | |
| | 208227 RV | 12 | - | |
| | 211195 AHDL | 2 | Balloon failure | |
| | 219211 G | 108 | Electronics failure | |
| | 229204 H | 106 | Flying as of 1/4/70 | |
| 100 | | 89 | Balloon failure | X |
| | 209124/I Q/JG | $258+$ | Flying as of 1/4/70 | |
| | | . 6 | Electronics failure | |
| | $\begin{aligned} & 22010 \text { FMVR } \\ & 22110 \end{aligned}$ | | | |
| | $\begin{aligned} & 22110^{-} \text {GMVR } \\ & 22210^{-} \mathrm{KMLR} \end{aligned}$ | | | |
| | 22310- LMDR | | | |
| | $22410^{-} \text {XMZR }$ | Flown | J. Blamont of France | |
| | $22610^{-} \mathrm{LMFR}$ | | | |
| | $22710^{-} \text {LMWR }$ | | | |
| | $22810^{-} \text {FMGR }$ | | | |
| 30 | $162033 / 6 \mathrm{D} / \mathrm{P}$ | 172 | Balloon failure | X |
| | 163036/2 A/V | 141 | Balloon failure | X |
| | 164035/6 P/QWXBCA | 0 | Burst | X |
| | 165031/6 U/FAGKYD | 5 | Leak | X |
| | *230037 FRCW | 60 | Electronics failure | X |
| 10 | 155017 A | 1 | Polyethylene balloon ascent damage | |

[^1]| Balloon $\#$ \# nnn pp f M (Note A) | Surface winds or_m/sec |
| :---: | :---: |
| Frequency__ MHz | Cloud cover |
| | Flight duration days |
| Method of leak test (Note B) | Number of orbits |
| Test results | Position last heard |
| | Probable cause of failure: |
| Mfr. balloon $\#$ | Note A: nnn $=$ flight number; $\mathrm{pp}=$ |
| Balloon mass_______gm | pressure altitude in tens |
| Balloon volume _ min ${ }^{3}$ | of millibars; $f=$ frequency $=$ 15.02 f MHz ; $\mathrm{M}=$ balloon code |
| | letters |
| Film thickness (Note C) mil | Note B: Freon test - complete survey |
| Electronics mass__ gm | of balloon using General Electric |
| | Co. halogen detector; balloon overpressurized with air and |
| Gross weight less helium__gm | Freon. |
| | Tent test - balloon pressurized with air and Freon and left under canopy for 24 hr . |
| Launch site__ S | Canopy tested with halogen |
| Launch time UT | detector for escaped gas. |
| Ascent rate | Water test - balloon pressur- |
| $0-5,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$ | ized with air and placed in wading pool filled with water; |
| $5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$ | leak detected from bubbles. |
| Float altitude_(Note D) m min min | Note C: $1 \mathrm{mil}=0.001 \mathrm{in} .=25 \mu$. |
| Radar (Note E) | Note D: Balloon floats at a constant |
| Computed (Note F) | density surface; expressed in $\mathrm{kg} / \mathrm{m}^{3}$, the number would not be meaningful. "Density altitude" |
| Telemetry | is altitude in U.S. Standard |
| Code Sensor | Atmosphere, 1962, corresponding to the computed or measured density level at float altitude. |
| \cdots | Note E: Altitude is measured float altitude from radar, corrected to "density altitude." |
| | Note F: "Density altitude" in meters, computed from balloon volume - and gross mass. |

Occulting angle is the sum ${ }^{1}$ s elevation angle above which the balloon obscures the sun elevation angle sensor. On some flights an.occulting disk was used to provide a precise angle for blocking the sun and preventing reflected light from the metaliced cap from entering the sun elevation angle sensor.

Mfr. balloon 非 Schjeldahl 3
Balloon mass
Balloon volume
Balloon diameter
Film thickness
Electronics mass
Ballast
Gross weight less helium
Free lift
Launch site_ $172^{\circ} 32^{\circ} \mathrm{E}, 43^{\circ} 29^{\circ} \mathrm{S}$
Launch time_21/04/68 $\quad 1930$ UT

Ascent rate

	$2.1 \mathrm{~m} / \mathrm{sec}$
	$2.1 \mathrm{~m} / \mathrm{sec}$
Floa	13,900* m
Tele	
- Code	
X	
Z	

Surface winds
Cloud cover $1 / 4 \mathrm{Sc}$; $1 / 2 \mathrm{Ac} \quad-$
Flight duration_319 days

Number of orbits 19

Position last heard 62146 (04/03/68)

Probable cause of failure:
Balloon failure

Remarks:

Design altitude was $15,500 \mathrm{~m}$. After
inflation, the defective inflation
tube was cut out and replaced by a
patch. Apparently $0.3 \mathrm{~m}^{3}$ of air vas
sucked into the balloon during the
repair operation. This provided a
300 gm increase in effective ballast.

Balloon 非	$148203 G$	
Frequency	15.023	MHz

Method of leak test Freon

Test results No leaks detected

Surface winds gusty $4 \mathrm{~m} / \mathrm{sec}$ cloud cover $1 / 4 \mathrm{Sc}$
Flight duration 240 days

Number of orbits 20
Position last heard 63679 (12/02/69)

Probable cause of failure:
Unknown

Remarks: The top third of the balloon was covered with a metalized Mylar cap.

Balloon $⿰ ⿰ 丨 丿 帀_{\text {＿}}$ 149204．2	Surface winds gusty $\quad 4 \mathrm{~m} / \mathrm{sec}$
Frequency $15.024 \quad \cdot \mathrm{MHz}$	Cloud cover $1 / 4 \mathrm{Sc}$
	Flight duration 207 days
Method of leak test Freon	Number of orbits＿ 13
Test results No leaks detected	Position last heard 73122（10／01／69）
	Probable cause of failure：
	Unknown
Mfr．balloon \＃Raven 110	
Balloon mass 1716 ＿gm	
Balloon volume＿ 7.037 m ${ }^{3}$	
Balloon diameter 2．38 m	Remarks：The top third of the balloon
Film thickness＿2 mil	was covered with a metalized Mylar cap．
Electronics mass＿138 gm	
Ballast＿ 77 ＿${ }^{\text {gm }}$	
Gross weight less helium 1950 gm	
Free lift $\quad 195 \mathrm{gm}$	

Launch site＿$\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 18／06／68 2102 UT

Ascent rate

GHOST BALLOON FLIGHT SUMMARY

Surface winds $070^{\circ} \quad 2.6 \mathrm{~m} / \mathrm{sec}$
Cloud cover $1 / 8 \mathrm{Cb} ; 3 / 4 \mathrm{Ac}$ Flight duration \qquad Number of orbits 0 Position last heard 63167 (03/10/68)
'Probable cause of failure:
Excessive water loading
\qquad

Remarks: The balloon was a 1×6.7 cylinder equipped with hemisphèrical end caps and a $1 \times 1 \mathrm{mil}$ sleeve. The balloon film was waxed to prevent accumulation of water and ice. 85° occulting angle.

Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 02/10/68 1802 UT
Ascent rate

$$
0-5,000 \mathrm{~m} \quad 2.18 \mathrm{~m} / \mathrm{sec}
$$

5,000-10,000 m \qquad
Float altitude \qquad 1352 \qquad
Radar \qquad Computed \qquad

Telemetry
Code
Sensor

K Sun angle_...
\qquad
\qquad

GHOST BALLOON FLIGHT SUMMARY

	Surface winds variable, light
Frequency_ 15.027 . MHz	Cloud cover $1 / 8 \mathrm{Cu}$
	Flight duration_1 days
Method of leak test Not tested	Number of orbits_0
Test results	Position last heard 74373 (03/10/68)
	Probable cause of failure: _ Ascent damage
Mfr. balloon 非 Winzen 4	
Balloon mass_69,400_._8m	
Balloon volume_ 4419 m_m ${ }^{3}$	
Balloon diameter_20.37 m	Remarks: The balloon was fabricated of
Film thickness_2 mil	StratoFilm polyethylene. It was launched
Electronics mass_168_gm	with 2866 gm of Freon 11 as an ascent
Ballast_2428 . $\mathrm{mm}_{\text {m }}$	ballast to slow entry into float level,
Gross weight less helium 71, 996 gm	and a $66.9 \mathrm{~m}^{3}$ volume lifting balloon to
Free lift 5\%_3582 gm	aid ascent through the tropopause.
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	The flight was radar tracked to 16 km ; signal was lost at this point
Launch time 03/10/68_1753 UT	due to extreme slant range.
Ascent rate .	
- $0-5,000 \mathrm{~m} \quad 2.32 \mathrm{~m} / \mathrm{sec}$	80.2° occulting angle.
$5,000-10,000 \mathrm{~m} \quad 3.09 \mathrm{~m} / \mathrm{sec}$	
Float altitude__ 29,500 m	
Radar	
Computed	
Telemetry	
Code Sensor	
A Sun angle	
\square -	

GHOST BAILOON FLIGHT SUMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon ${ }^{\text {F___157228 LU }}$	
Frequency_15.028_ ${ }^{\text {MHz }}$	
Method of leak test integrity	
Test results_ No leaks detected,	
48 hr test	
Mfr. balloon \#\# Schjeldah1:1169-3	
Balloon mass_1702	gm
Balloon volune__6.06	m^{3}
Balloon diameter 2.26	m
Film thickness $1.5+0.5^{*}$	mil
Electronics mass_170	gm
Ballast_8 8	gm
Gross weight less helium_1880 gm	
Free lift_11\% 207	207 gm

Launch site $\frac{172^{\circ} 32^{\circ} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}}{}$| Launch time $10 / 10 / 68$ |
| :--- |
| 1431 UT |

Ascent rate
- $0-5,000 \mathrm{~m} \quad 1.89 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$
Float altitude
$11,070 \mathrm{~m}$
Radar
\qquad
Computed__x

Te lemetry

Code	Sensor
L	Sun angle
U	Strain gage

Surface wind
Cloud cover $1 / 8 \mathrm{Sc}$
Flight duration \qquad
Number of orbits
6
Position last heard 55172 (07/02/69)

Probable cause of failure:
Icing
\qquad

Remarks: The balloon was equipped with a metalized Mylar cap.
80° occulting disk, 79.3° occulting angle.

Doubloon with 1.5 mil Mylar outer balloon; 0.5 mil saran inner balloon.

GHOST BALLOON FLIGHT SUMMARY

Surface winds_ $020^{\circ} \quad 3.6 \mathrm{~m} / \mathrm{sec}$
Cloud cover $3 / 4 \mathrm{Ac} ; 1 / 4 \mathrm{As}$
Flight duration 118 days
Number of orbits_9
Position last heard 62976 (10/02/69)

Probable cause of failure:
Icing

\qquad

Remarks: The electronics package was equipped with a linear sun-angle sensor.
80° occulting disk, 77.8° occulting angle.

The balloon was 0.5×0.5 mil bilam Mylar with a 0.5 mil adhesive layer.

GHOST BALLOON FLIGHT SUMMARY

 Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$ Launch time 23/10/68 1743 UT

Ascent rate
$0-5,000 \mathrm{~m} \frac{2.08 \mathrm{~m} / \mathrm{sec}}{}$
. $5,000-10,000 \mathrm{~m} \frac{2.27 \mathrm{~m} / \mathrm{sec}}{23,350 \mathrm{~m}}$

Radar \qquad Computed x

Telemetry.
Code
$\frac{\mathrm{D}}{\mathrm{P}} \cdot \frac{\text { Sun angle }}{\text { Strain gage }}$
\qquad
\qquad

Surface winds calm $\mathrm{m} / \mathrm{sec}$
Flight duration clear

Number of orbits $3+$
Position last heard (12/04/69)

Probable cause of failure:
Sudden balloon failure

Remarks: The balloon was launched with 3880 gm of Freon 11 as an ascent ballast to slow entry into float level, and a $5.3 \mathrm{~m}^{3}$ volume lifting balloon to aid ascent through the tropopause.

The flight was radar tracked at altitude for approximately che first 6 hr .

Mfr. balloon \# Raven 105		
Balloon mass	24,900	gm
Balloon volume	697	-

Balloon diameter 11
Film thickness $\quad 0.75 \times 0.75 \mathrm{mil}$

Ballast \qquad 3182 gm
Gross weight less helium 29,850 gm .Free lift $16 \% \quad 4776 \mathrm{gm}$

| Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}$, | $43^{\circ} 29^{\prime} \mathrm{S}$ |
| :--- | :--- | :--- |
| Launch time_ $29 / 10 / 68$ | 1730 UT |

Ascent rate
$0-5,000 \mathrm{~m} \quad 3.47 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad 3.47 \mathrm{~m} / \mathrm{sec}$
Float altitude_ $\quad 23,350 \mathrm{~m}$

Radar \qquad X Computed \qquad
\qquad

Surface winds calm_m/sec
cloud cover 1/8 Ac
Flight. duration_141 days
Number of orbits 5
Position last heard_63367(18/03/69)

Probable cause of failure:* Balloon failure

\qquad

Remarks: The balloon was launched with 4776 gm of Freon 11 as an ascent ballast to slow entry into float level, and a $5.3 \mathrm{~m}^{3}$ volume liffing balloon to aid ascent through the tropopause.

The flight was radar tracked at altitude for $3^{\frac{1}{2}} \mathrm{hr}$.
80° occulting disk, 82.2° occulting angle.
*Package $A=228 \mathrm{gm}$;
Package $V=297 \mathrm{gm}$

Telemetry
Code.
Sensor

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 21/11/68 1725 UT
Ascent rate
$0-5,000 \mathrm{~m}$ \qquad $1.77 \mathrm{~m} / \mathrm{sec}$

5,000-10,000 m $\mathrm{m} / \mathrm{sec}$
Float altitude \qquad
Radar_x
Computed \qquad

Te lemetry
Code • Sensor
\qquad

Surface winds $210^{\circ} \quad 3 \mathrm{~m} / \mathrm{sec}$
Cloud cover $1 / 8 \mathrm{Cb} ; 3 / 8 \mathrm{Cs}$
Flight duration 68 days

Number of orbits 1+

Position last heard 85622 (27/01/69)

Probable cause of failure:
Icing

Remarks: The balloon was equipped with a metalized Mylar cap.

The electronics package was equipped with 6 in. occulting disk installed 72.6 cm above sun-angle sensor. Solar cell panel interference from disk begins at 77°.
84° occulting angle.

GHOST BALLOON FLIGHT SUMMARY

Balloon \# 167406 DL.	Surface winds_calm m/sec
Frequency__ $15.026 \ldots \mathrm{MHz}$.	Cloud cover_ $1 / 8 \mathrm{Cu}$
	Flight duration_3 days
Method of leak test Overpressure	Number of orbits_0
Test results _ No leaks detected	Position last heard 64238(28/11/68)
	Probable cause of failure: \qquad Icing
Mfr. balloon 非Schjeldahl 1204-7	
Balloon mass_1915*_gm	.
Balloon volume_r_4.446 mim	
	Remarks: The balloon was equipped with
Film thickness_1.5 ${ }^{\text {a }} 1.5$ mil	a metalized Mylar cap.
Electronics mass_190_gm gin	The electronics package was equipped
Ballast_106_ $\mathrm{gm}^{\text {m }}$	with a 15.23 cm occulting disk installed
Gross weight less helium 2211 gm Free lift 15%	72.6 cm above sun-angle sensor.
Free lift 15\% _-_-3	84° occulting angle.
Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}_{2} 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time_26/11/68_1732 UT	*Includes 89 gm strain gage and wire
Ascent rate	and 51 gm cap.
$0-5,000 \mathrm{~m} \quad 1.98 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$	
Float altitude_7335 m	
Radar ${ }^{\text {x }}$	
Computed__	
Telemetry	
Code Sensor	
D Sun angle	
L S Strain gage	
-	
-	

Mfr. balloon 非Schjeldah1 1204-8

| Balloon mass $\quad 1858^{*}$ | gm |
| :--- | :--- | :--- |
| Balloon volume $\quad 4.446$ | $\mathrm{~m}^{3}$ |

Balloon diameter_. 2.04 m
Film thickness_ 1.5×1.5 mil

Electronics mass	209	gm
Ballast	144	m

Gross weight less helium 2211 gm
Free lift_15\%_332_gm
Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 26/11/68 1733 UT
Ascent rate
$0-5,000 \mathrm{~m} \quad 1.85 \mathrm{~m} / \mathrm{sec}$
$5,0,00-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$
Float altitude_ 7335 m
Radar_ x
Computed \qquad

Te lemetry
Code Sensor
P
\square

Surface winds_calm_m/sec
Cloud cover $1 / 8 \mathrm{Cu}$ Flight duration 8 days

Number of orbits 0

Position last heard 65049 (03/12/68)

Probable cause of failure:
Icing
\qquad
\qquad

Remarks: The electronics package was equipped with a 15.23 cm occulting disk installed 72.6 cm above sun angle sensor.
84° occulting angle.
$\bar{*}$ Includes 90 gm strain gage wire.

GHOST BALLOON FLTGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非_170401 B
Frequency_(15.021

Mfr. balloon \# Schjeldah1 1204-10

Balloon mass	1797	gm
Balloon volume	4.446	$\mathrm{~m}^{3}$

Balloon diameter 2.04 m
Film thickness_ 1.5×1.5 mil

Electronics mass	190	gm
Ballast	224	gm

Gross weight less helium 2211 gm
Free lift 14\% $310 \quad \mathrm{gm}$

Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 4^{4} 3^{\circ} 2^{\prime} \mathrm{S}$
Launch time $01 / 12 / 68 \quad 1734$ UT
Ascent rate
0-5,000 m Not measured
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$
Float altitude 7440 m

Radar \qquad
Computed \qquad

Te lemetry

Code	Sensor
B	Sun angle
\square	
\square	

Surface winds $050^{\circ} \quad 5 \mathrm{~m} / \mathrm{sec}$
Cloud cover $1 / 2 \mathrm{Sc}$
Flight duration 8 days

Number of orbits_0
Position last heard 63553 (08/12/68)

Probable cause of failure:

Icing
\qquad
\qquad

Remarks: The balloon was equipped with a metalized Mylar cap. 84° occulting angle. .

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

GHOST BALEOON FLICHT SUMMARY

Balloon 非_ 174403 V	Surface winds _ 280°, $\quad 1 \mathrm{~m} / \mathrm{sec}$
Frequency_15.023 . MHz	Cloud cover $1 / 8 \mathrm{St}$; $1 / 8 \mathrm{Sc} ; 1 / 8 \mathrm{Ac}$
	Flight duration 5 days
Method of leak test_ Overpressure	Number of orbits 0
Test results No leaks detected	Position last heard 64700 (13/12/68)
- .	
	Probable cause of failure:
	Icing
Mfr. balloon 非Schjeldahl 1204-1	
Balloon mass_1817 gm	
Balloon volume_ 4.446 _ m^{3}	
Balloon diameter_2.04 m	Remarks: The balloon was equipped
Film thickness 1.5×1.5 mil	with a metalized Mylar cap.
Electronics mass_208_gm	84° occulting angle.
Ballast_ 186 __gm	
Gross weight less helium 2211 gm	
Free lift_14\% 310 gm	
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 09/12/68 1711 UT	
Ascent rate.	
$0-5,000 \mathrm{~m} \quad 1.94 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$	
Float altitude_m m	
Radar	
Computed x	
Te lemetry	
Code Sensor	
v Sun angle	
-	

GHOST BALLOON FLIGHT SUMAARY

Balloon 非_176803 NDHU	Surface winds $070^{\circ} \quad 3.6 \mathrm{~m} / \mathrm{sec}$
Frequency_ $15.023 \ldots \mathrm{MHz}$	Cloud cover $4 / 8 \mathrm{Sc}$ at 2000 ft .
	Flight duration $\quad 6$
Method of leak test Not tested	Number of orbits 0
Test results	Position last heard 65660 (15/12/68)
	Probable cause of failure: Excessive water load on balloon
Mfr. balloon $\#$ R Raven 6	
Balloon mass_5270 gm	
Balloon volume $\quad 6.62 \quad \mathrm{~m}^{3}$	
Balloon diameter $1.067 \times 8.38^{*} \mathrm{~m}$	Remarks: 84° occulting angle.
Film thickness $1 \times 1 \times 1^{*} \mathrm{mil}$	
Electronics mass \qquad 373 gm	*The balloon was a cylinder 8.38 m
Ballast_ $127 \ldots$ gm	long, with a 2 mil bilam. Mylar sleeve.
Gross weight less. helium 5770 gm	
Free lift $12 \% \quad 690 \mathrm{gm}$	
Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$.	
Launch time 10/12/68 . 1230 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 1.9 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$ _m/sec	
Float altitude_m 1845	
Radar x	
Computed	
Telemetry	
Code Sensor	
$N \quad$ Sun angle	
D Strain gage	
H Electronics temperature	
U Air temperature	

GHOST BALLOON FLIGHT SUMMARY

Balloon 非__177405 0U	Surface winds $030^{\circ} \quad 1.5 \mathrm{~m} / \mathrm{sec}$
Frequency $15.025 \ldots \mathrm{MHz}$	Cloud cover $7 / 8 \mathrm{Sc}$
	Flight duration_29 days
Method of leak test Overpressure	Number of orbits__ $1+$
Test results No leaks detected	Position last heard 53473 (16/01/69)
-	,
	Probable cause of failure:
	Icing
Mfr. balloon \# Schjeldahl 1204-9	-
Balloon mass_1909_gm	,
Balloon volume_ 4.446_ m m ${ }^{3}$	
	Remarks: The balloon was equipped with
Filn thickness_1.5×1.5 mil	a metalized Mylar cap.
Electronics mass_206_gm gm	Strain data show decreased strain
Ballast_gm gm	on three occasions; 27 December, and
Gross weight less helium 2211 gm	2 and 17 January, with the minimum strain
Free 1ift 14\%_310 gm	dropping to no overpressure on the last two dates, and the maximum strain reach-
Launch site $172^{\circ} 32^{\prime} \mathrm{E}_{2} 43^{\circ} 29^{\prime} \mathrm{S}$	ing 0.33 and 0.14%, respectively. This
Launch time 19/12/68 1728 UT	can be attributed to ice forming on the
Ascent rate	balloon at night (despite the top cap)
$0-5,000 \mathrm{~m}$ [$2.2 \mathrm{~m} / \mathrm{sec}$	and melting during the day.
$5,000-10,000 \mathrm{~m}$ - $1.56 \mathrm{~m} / \mathrm{sec}$	
Float altitude_ 7530 m	- 84° occulting angle.
Radar_ x	
Computed	

Telemetry
Code. Sensor
Qun - Sungle

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT' SUMMARY

Balloon 非_ 184806 FR	Surface winds $190^{\circ} \quad 6.2 \mathrm{~m} / \mathrm{sec}$
Frequency_ $15.026 \quad \mathrm{MHz}$	Cloud cover
	Flight duration 2 days
Method of leak test Not tested	Number of orbits_ 0
Test results	Position last heard 74375 (07/02/69)
	Probable cause of failure:
	Excessive water load on balloon
Mfr. balloon 非Raven 113	
Balloon mass 5372 gm	
Balloon volume $6.62 \quad \mathrm{~m}^{3}$	
Balloon diameter $1.067 \times 8.38^{*} \mathrm{~m}$ \qquad	Remarks: The electronics package employed
Film thickness_ $1 \times 1 \times 1$ mil	an end-fed full-wave antenna.
Electronics mass 195 gm	
Ballast_ 203 gm	
Gross weight less helium 5770 gm	
Free lift ${ }_{\text {l }}$ 12\% $\quad 690 \mathrm{gm}$	The balloon was a cylinder 8.38 m long, with a 2 mil bilam Mylar sleeve.
Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 06/02/69 1730 UT	
Ascent rate	
0-5,000 m Not measured	
$5,000-10,000 \mathrm{~m}$ _ m/sec	
Float altitude_ 1660 m	
Radar__x	
Computed	
Telemetry	
Code . Sensor	
F Sum angle	
$\mathrm{R} \quad$ Strain gage	

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Launch site $\frac{172^{\circ} 32}{}{ }^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 18/02/69 1810 UT

Ascent rate
$0-5,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$
Float altitude

Radar x
Computed \qquad

Telemetry

Code	Sensor
D	Sun angle

Float altitude 2053 m

Radar_ X
Computed___

Surface winds_ $260^{\circ} \quad 2 \mathrm{~m} / \mathrm{sec}$
Cloud cover $3 / 4 \mathrm{Sc}$
Flight duration 4 days

Number of orbits 0

Position last heard 74175 (21/02/69)

Probable cause of failure:
Excessive water load on balloon
\longrightarrow
\qquad

Remarks: Strain data on last day showed a maximum strain of 0.48%; on that day a minimum strain of 0% was reached. There is no indication the balloon had developed a leak.

The electronics package employed an end-fed full-wave antenna.
84.8° occulting angle.
*The balloon was a cylinder 8.38 m long, with a 2 mil bilam Mylar sleeve.

五

GHOST BALLOON FILIGHT SUMMARY

Balloon mass_1048	gm
Balloon volume 4.445	m^{3}
Balloon diameter_2.04	m
Film thickness_0.75 $\times 0.75$	mil
Electronics mass_490*	gm
Ballast_138	gm
Gross weight less helium 1676	gm
Free lift 10\% 168	gm

Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 06/03/69 1951 UT Ascent rate
$0-5,000 \mathrm{~m} \quad 1.3 \mathrm{~m} / \mathrm{sec}$ $5,000-10,000 \mathrm{~m} \quad 1.83 \mathrm{~m} / \mathrm{sec}$ Float altitude 9620 m
Radar \qquad X

Computed \qquad

Te lemetry
Code Sensor.

R
X
Hypsometric pressure

Surface winds_calm
$\mathrm{m} / \mathrm{sec}$

Cloud cover $1 / 8 \mathrm{Cu}$
Flight duration 60 days

Number of orbits_4
Position last heard 63345 (04/05/69)

Probable cause of failure:
Frost accumulation on balloon

Remarks: This was the first flight test of the pressure-subtracting hypsometer--a new device for measuring atmospheric pressure.

The balloon was protected against shipping damage by a strippable coating.
87.5° occulting angle.

```
\({ }^{\star}\) Hypsometer \(=53 \mathrm{gm}\);
    hypsometer electronics \(=232\) gm;
    sun-angle electronics \(=205\) gm.
```

GHOS'E BALLOON FLIGHT SUMMARY

Balloon 非_189406 W	Surface winds $300^{\circ} \quad 7.7 \mathrm{~m} / \mathrm{sec}$
	Cloud cover $1 / 8 \mathrm{Sc}$: $7 / 8 \mathrm{Ci}$
Pressure	Flight duration__ 8 days
Method of leak test_comparison	Number of orbits
Test results No leaks detected	Position last heard 53132 (17/03/69)
	Probable cause of failure: Leak in balloon, launch damage
Mfr. balloon 非Schjeldah1 27	
Bailoon mass_1820 gm	
Balloon volume $4.445 \quad \mathrm{~m}^{3}$	
	Remarks: The balloon was equipped with
Film thickness_1.5 $\underbrace{1.5} \mathrm{mil}$	a metalized Mylar cap.
Electronics mass 228 __gm	The balloon was severely damaged
Ballast_163_gm	at launch when it struck the side of
Gross weight less helium_ 2211 gm	a building.
Free lift 15\% 3	86.7° occulting angle.
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 10/03/69 1855 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 1.74 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m} \quad 1.94 \mathrm{~m} / \mathrm{sec}$	
Float altitude_ 7100 m	
Radar_x	
Computed_	

Telemetry
Code
W Sensor
\ldots

Balloon mass	1039	m
Balloon volume	10.65	-

Balloon diameter: 2.20 m

Film thickness \quad| $0.75 \times 0.75 \quad$ mil |
| :--- |
| Electronics mass_ 258^{*} |

Ballast 93 gm
Gross weight less helium 1390 gm
Free lift 10\% $\quad 139 \mathrm{gm}$

Surface winds__ $070^{\circ} \quad 5.1 \mathrm{~m} / \mathrm{sec}$
Cloud cover $1 / 8 \mathrm{Cu}$
Flight duration_225 days
Number of orbits__ 9
Position last heard 74075 (28/01/69)

Probable cause of failure:
Icing

Remarks: The balloon was protected against shipping damage by a strippable coating.
81.8° occulting angle.
*Hysometer $=96 \mathrm{gm}$.

Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_18/03/69 0109 UT
Ascent rate

$0-5,000 \mathrm{~m}$
$5,000-10,000 \mathrm{~m} \quad 1.26 \mathrm{~m} / \mathrm{sec}$
Float altitude $\quad 1.57 \mathrm{~m} / \mathrm{sec}$

Radar X

Computed \qquad

Telemetry

Code	Sensor
CG	Sun angle

Te lemetry
Code
Sensor

GHOST BALLOON ELIGHT SUMAARY

Balloon \# 194406 J	Surface winds_ $060^{\circ} \quad 6.17 \mathrm{~m} / \mathrm{sec}$
Frequency $15.026 \ldots \mathrm{MHz}$	Cloud cover 5/8 Sc
Pressure	Flight duration_ 5 days
Method of leak test comparison	Number of orbits 0
Test results \qquad and repaired \qquad	Position last heard 64142 (04/04/69)
	. Probable cause of failure:
	Icing
Mfr. balloon 非Schjeldah1 1204-19	
Balloon mass_ 1796 gm	-
Balloon volume $\quad 4.445 \quad \mathrm{~m}^{3}$	-
Balloon diameter_2.04. m	Remarks: This balloon was equipped with
Film thickness_1.5 1.5 mil	a metalized Mylar cap.
Eilectronics mass_ 249 gm	86.7° occulting angle.
Ballast_166_gm	
Gross weight less helium 2211 gm	
Free lift 14\% 332 gm	

Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 31/03/69	${ }^{0} 0028$ UT
Ascent rate	
0-5,000 m	$2.31 \mathrm{~m} / \mathrm{sec}$
5,000-10,000	$1.39 \mathrm{~m} / \mathrm{sec}$

Float altitude $\quad 7330$ m

Radar \qquad
Computed \qquad

GHOST BALLOON FTIIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon \#_ 196903 L	Surface winds $080^{\circ} \quad 2.57 \mathrm{~m} / \mathrm{sec}$
Frequency_15.203 MHz	Cloud cover $7 / 8 \mathrm{Sc} ; 8 / 8 \mathrm{As}$
	Flight duration 2 days
Method of leak test Overpressure	Number of orbits
Test results Small leak detected	Position last heard 74372 (24/04/69)
	Probable cause of failure: Excessive water load on balloon
Mfr. balloon \#\#Raven 129	
Balloon mass 5384 gm	
Balloon volume 6.62 m ${ }^{3}$	
Balloon diameter 1.067 m	Remarks: The balloon was launched
Film thickness_ $1 \times 1 \times 1$ mil	during a heavy rainstorm. It climbed
Electronics mass_262_gm	to 730 m , then descended to 440 m
Ballast_ 431 ___ $\mathrm{gm}^{\text {m }}$	where some of the water load was shed.
Gross weight less helium 6082 gm	Thereafter it ranged between 440 and
Free lift $\frac{12.8 \%}{}$	560 m during the 50 min that it was tracked by radar; target was then lost
Launch site_ $172^{\circ} 32^{\prime}$ E, $43^{\circ} 29^{\prime} \mathrm{S}$	because of intense radar rain return.
Launch time 23/04/69 0345 UT	
Ascent rate 0 - maximum altitude $4.05 \mathrm{~m} / \mathrm{sec}$ $5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$	repair the small leak since, for the purpose of this flight, the balloon life was more than adequate.
Float altitude \qquad Radar_x	86° occulting angle.

Telemetry

Code	Sensor
L	Air temperature \square

GHOST BALLOON FLIGHT SUMMARY

Balloon $\frac{197184 / 8 / 2 \quad \mathrm{~F} / \mathrm{P} / \mathrm{U}}{\text { Frequency } 15.024 / 15.028 / 15.022 \mathrm{MHz}}$
Method of leak test Overpressure
Test results No leaks detected

Surface winds $045^{\circ} \quad 2.6 \mathrm{~m} / \mathrm{sec}$
Cloud cover $1 / 8 \mathrm{Sc} ; 7 / 8 \mathrm{Cs}$
Flight duration _39___ days
Number of orbits _0 0
Position last heard
(26/06/69)

Probable cause of failure:
Unknown

Remarks: The cut-down device operates with night/day temperature change. Contacts are wired to measure either electronics temperature or high or low reference resistor. The total cycle for this cut-down device was 180 days.
89.4° occulting angle.

Launch time 19/05/69_2037 UT Ascent rate

$$
0-5,000 \mathrm{~m}
$$

\qquad
$5,000-10,000 \mathrm{~m} \quad 2.68 \mathrm{~m} / \mathrm{sec}$
Float altitude $12,500 \mathrm{~m}$

$$
\operatorname{Radar} \quad \mathrm{x}
$$

Computed \qquad

Telemetry
Code Sensor
$\frac{\mathrm{F}}{\frac{\mathrm{P}}{\mathrm{U}} \quad \frac{\text { Sum angle }}{\text { Vertical magnetometer }}}$
\qquad

GHOST BALLOON FLIGHT SUMMARX

Balloon 非 198401 W	Surface winds calm m/sec
Frequency__ $15.021 \quad \mathrm{MHz}$	Cloud cover clear
	Flight duration 8 days
Method of leak test Freon	Number of orbits 0
Test results No leaks detected	Position last heard 63293 (09/06/69).
	Probable cause of failure: \qquad Icing
Mfr. balloon 非Schjeldahl 24	-
Balloon mas's 1770 gm	
Balloon volume 4.44 min	
Balloon diameter 2.04 m m	Remarks: Launched simultaneously with
Film thickness $1.5 \times 1.5 \quad \mathrm{mil}$	199402 C, a capped balloon.
Electronics mass_176_gm	80.23° occulting angle.
Ballast_ 265 . gm	
Gross weight less helium_2211 gm	
Free lift ${ }_{\text {20\% }}$	
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 02/06/69 2019 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 2.26 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$ - $1.36 \mathrm{~m} / \mathrm{sec}$	
Float altitude 7200 m	
Radar x	
Computed	
Telemetry	
Code Sensor	
W Sun angle	

GHOST BALLOON FLIGHT SUMMARY

Te lemetry
Code Sensor
C Sun

GHOST BALLOON ELIGHT SUMMARY

Balloon \#_201407 I	Surface winds _ calm m/ mec
Frequency $\quad 15.027 \ldots \quad \mathrm{MHz}$	Cloud cover clear
	Flight duration_7 days
Method of leak test Freon	Number of orbits_o_ O
Test results Inflation fitting	Position last heard_(10/06/69)
leaked and was repaired. No other	
Ieaks detected.	Probable cause of failure:
	Icing
Mfr. balloon \# Schjeldahl 26	- -
Balloon mass \qquad	
Balloon volume $4.44 \ldots \mathrm{~m}^{3}$.
Balloon diameter__ 2.04 __m	Remarks: The balloon was equipped with a
Film thickness_1.5×1.5 mil	metalized Mylar cap; it was launched
Electronics mass_172 gm	simultaneously with 200404 V , an
Ballast_____ 214 gm	uncapped balloon.
Gross weight less helium 2211 gm	80.23° occulting angle.
Free 1ift_ $\underbrace{\text { 15\% }} 332 \mathrm{gm}$	
Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	*incIudes 52 gm top cap.
Launch time 14/06/69 2020 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 1.81 \mathrm{~m} / \mathrm{sec}$	
5,000-10,000 m_1.67 m/sec	
Float altitude__ 7000 m	
Radar_	
Computed	

Telemetry
Code
Sensor
I Sun angle

GHOST BALLOON FLIGHT SUMMARY

Probable cause of failure:
Icing

Remarks: Launched simultaneously with 203403 M, a capped balloon.
80.23° occulting angle.

Balloon 非_204405 N	Surface winds calm m/sec
Frequency_15.025 MHz	Cloud cover $1 / 2 \mathrm{Ci}$
	Fiight duration_4 days
Method of leak test Freon	Number of orbits_0
Test results No leaks detected	Position last heard 63065 (14/06/69)
.	
	Probable cause of failure:
	Icing
Mfr. balloon 非Schjeldahl 13	
Balloon mass 1746 gm	
Balloon volume $4.44 \quad \mathrm{~m}^{3}$	
Balloon diameter 2.04 m	Remarks: Launched simultaneously with
Film thickness_1.5 ${ }^{1.5} \mathrm{mil}$	205404 Y, a capped balloon.
Electronics mass_178_gm	80.23° occulting angle.
Ballast_ 287 gm	
Gross weight less helium_2211 gm	
Free lift 20\% $442^{\circ} \mathrm{gm}$	
Launch site $172^{\circ} 32 \mathrm{E}$, $43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 11/06/69 2016 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 2.08 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m} \quad 1.90 \mathrm{~m} / \mathrm{sec}$	
Float altitude_ 7050 m	
Radar X	
Computed	

Te lemetry
Code Sensor
N
\square
\square

Surface winds calm_n_m/sec
Cloud cover. $1 / 8 \mathrm{Sc} ; 7 / 8 \mathrm{Cs}$.
Flight duration_12 days

Number of orbits__ 0
Position last heard_(04/07/69)

Probable cause of failure:
Unknown

Remarks: The flight was made to monitor the internal temperature of a conically shaped "witch's hat" package. This was the third flight of this package; the previous flights were 195903 L and 196903 L.

GHOST BALLLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非_209124/1 Q/JG
Frequency_15.024 15.021 MHz
Method of leak test Freon
Test results_No leaks detected

Surface winds | | 045° | $2.6 \mathrm{~m} / \mathrm{sec}$ |
| :--- | :--- | :--- |
| Cloud cover Fog | | |
| Flight duration | $258+$ | days |

Number of orbits Position last heard still flying as

Probable cause of failure:

Balloon mass	4220	m
Balloon volume	28.96	n^{3}
Balloon diameter	3.81	
Film thickness	1×1	mi1
Electronics mass	546^{*}	
Ballast		gm
Gross weight less	lium	
Free lift_ 18\%		gm

Launch site $172^{\circ}{ }^{32}{ }^{\prime} E_{2} 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 16/07/69 2020 UT

Ascent rate

$$
0-5,000 \mathrm{~m} \quad 2.38 \mathrm{~m} / \mathrm{sec}
$$

$$
5,000-10,000 \mathrm{~m}-2.38 \mathrm{~m} / \mathrm{sec}
$$

Float altitude $14,800 \mathrm{~m}$

> Radar__x
Computed_x

Telemetry

Code
Sensor
$\frac{\text { Qun angle }}{\text { Q }} \frac{\text { Sagnetometer }}{\text { Q }}$

Remarks: The balloon was flown with an ascent ballast of 400 gm Freon 12, used with two pibals as lifter balloons. The float altitude was corrected for flight level after Freon ballast boiled away.
82.6° occulting angle.

GHOST BALLOON FLIGHT SUMMARY

Balloon \#\# 210105 DMAG (DIAG)	Surface winds $\quad 360^{\circ} \quad 2.5 \mathrm{~m} / \mathrm{sec}$
Frequency 15.025 MHz	Cloud cover 5/8 St: $7 / 8 \mathrm{Sc}$
	Flight duration 6 days
Method of leak test Freon	Number of orbits 0
Test results No leaks detected*	Position last heard (21/09/69)
	Probable cause of failure:
Raven 106	Electronics failure
Mfr. balloon 非Schjeldahl 1222-4	-
Balloon mass $\mathrm{R}=3391$; $\mathrm{S}=3133 \mathrm{gm}$	
Balloon volume each $28.97 \mathrm{~m}^{3}$.
Balloon diameter \qquad	Remarks: Two balloons were required to
Film thickness each $0.75 \times 0.75 \mathrm{mil}$	carry the payload to desired altitude.
Electronics mass \qquad	The "M" transmitted as " I " and
Ballast_I60 gm	"G" failed to transmit due to local RF
Gross weight less helium 8217 gm	feedback.
Free lift_18.9\% 1553 gm	
	$79.8{ }^{\circ}$ occulting angle.
Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 16/06/69 1813 UT	* 53 cm rip on gore seam of Raven balloon
Ascent rate	was repaired.
$0-5,000 \mathrm{~m} \quad 1.56 \mathrm{~m} / \mathrm{sec}$	** Flaat altitude corrected.
$5,000-10,000 \mathrm{~m}$ - $1.7 \mathrm{~m} / \mathrm{sec}$	
Float altitude $15,810^{* *} \mathrm{~m}$	
Radar_ x	
Computed_x	-
Telemetry	
Code Sensor	
D Sun angle	
I Radio altimeter	
A Air temperature	
G Reference	

GHOST BAILOON FLTGHT SUMMARY

Balloon \# 211195 AHDL	Surface winds_calm m/sec
Frequency_15.025 MHz	Cloud cover_1/8 Sc
	Flight duration_2 days
Method of leak test Not tested	Number of orbits 0
Test results	Position last heard 74375 (04/10/69)
	Probable cause of failure: \qquad Balloon faiIure
Mfr. balloon 非Schjeldahl 1165-5	
Balloon mass_7718 gim	
Balloon volume $36.47 \quad \mathrm{~m}^{3}$	
Balloon diameter 4.11 m	Remarks: The flight was made with a
Film thickness 1.5×1.5 Mylar mil	canniballoon; it ascended $100 \mathrm{~m} \sim 2 \mathrm{hr}$
Electronics mass 1584 gm	after reaching altitude, indicat-
Ballast_302__gm	ing that it had developed a hole and
Gross weight less helium 9604 gm	lost its free-lift gas. During the
Free lift 20\% 1902 gm	remainder of the day it lost 50 m .
Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 03/10/69 1933 UT	
Ascent rate	
$0-5,000 \mathrm{~m}$ [$2.87 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m} 3.2 \mathrm{~m} / \mathrm{sec}$	
Float altitude__12, 130 m	
Radar_ x	
Computed x	
Telemetry	
Code . Sensor	
A Sun angle	
$\mathrm{H} \quad$ Reference	
D. Air temperature	
L Radio altimeter	

GHOST BAJLLOON FLIGHT SUMMARY

Float altitude \qquad
Radar \qquad
Computed \qquad

Telemetry Code	Sensor
L	Sun angle
\square	
\square	

Surface winds $093^{\circ} \quad 7.7 \mathrm{~m} / \mathrm{sec}$
Cloud cover_2/8 Cu________
Flight duration 3 days

Number of orbits_0
Position last heard (09/11/69)

Probable cause of failure:
Excessive water load on balloon

Remarks: The balloon was a 3 mil cylinder with 2 mil sleeve and hemispherical end caps. It was. Iaunched from Johnston Atoll.

GHOST BALLOON FLIGHI SUMMARY

Surface winds $\frac{097^{\circ}}{8.2 \mathrm{~m} / \mathrm{sec}}$
Cloud cover $4 / 8 \mathrm{Cu}$
Flight duration
Number of orbits__ 0

Position last heard (08/11/69)

Probable cause of failure:
Excessive water load on balloon

Remarks: The balloon was a 3 mil cylinder with 2 mil sleeve and hemispherical end caps. It was launched from Johnston Atoll.

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY .

Balloon \#\#_216901 P	Surface winds $140^{\circ} \quad 3.1 \mathrm{~m} / \mathrm{sec}$
Frequency_15.021_ MHz	Cloud cover $2 / 8 \mathrm{Cu} ; 1 / 8 \mathrm{Ci}$
	Flight duration_1 days
Method of leak test Not tested	Number of orbits 0
Test results	Position last heard_ (09/11/69)
	Probable cause of failure: . Excessive water load on balloon
Mfr. balloon \# Raven 112	-
Balloon mass ${ }^{\circ} \mathrm{5} 311 \mathrm{gm}$	-
Balloon volume $\quad 6.62 \quad \mathrm{~m}^{3}$.
Balloon diameter_ 1.067 m	Remarks: The balloon was a 3 mil
Film thickness_ 5 mil	cylinder with 2 mil sleeve and hemi-
Electronics mass 195 gm	spherical end caps. It was launched
	from Johnston Atoll.
Gross weight less helium 6234 gm	
Eree lift_ 748 gm	
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 09/11/69 1902 UT	
Ascent rate	
$0-5,000 \mathrm{~m}$ m/ mec	
$5,000-10,000 \mathrm{~m}$ _m/sec	
Radar	
"Computed	

Telemetry
Code Sensor
\xrightarrow{p} Sun angle
\qquad

\qquad

GHOST BALLOON FLIGHT SUMMARY

Balloon mass	5257	gm
Balloon volume	6.62	m^{3}

Balloon diameter	1.067	m
Film thickness	5	mil
Electronics mass	197	gm
Ballast	780	gm

Gross weight less helium \begin{tabular}{r}
$6234 \quad \mathrm{gm}$

Free lift

\quad

748 gm
\end{tabular}

Free lift 748 gm

Launch site $172^{\circ} 32$	$172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ}{ }^{\prime} 9^{\prime} \mathrm{S}$
Launch time 10/11/69	2018 UT
Ascent rate	
0. 5,000 m	$\mathrm{m} / \mathrm{sec}$
5,000-10,000 m	$\mathrm{m} / \mathrm{sec}$

Float altitude m

- Radar \qquad Computed \qquad

Telemetry Code Sensor
J Sun angle
\qquad
-

- \qquad

Surface winds $220^{\circ} \quad 2.1 \mathrm{~m} / \mathrm{sec}$ Cloud cover $6 / 8 \mathrm{Ci} ; 2 / 8 \mathrm{Cu}$ Flight duration 2 days Number of orbits_0 Position last heard (11/11/69)

Probable cause of failure:
Excessive water load on balloon
\qquad

Remarks: The balloon was a 3 mil cylinder with 2 mil sleeve and hemispherical end caps. It was launched from Johnston Atoli.

GHOST BALLOON FLIGHT SUMMARY

Balloon 3 22110-* GMVR	
Frequency $15.0475^{* *} \quad \mathrm{MHz}$	Cloud cover $7 / 8 \mathrm{St} ; 5 / 8 \mathrm{Sc}$
	Flight duracion__ days
Method of leak test None	Number of orbits
Test results	Position last heard
	Probable cause of failure:
Mfr. balloon \# Raven 144	
Balloon mass_2841 gm	
Balloon volume__ $25.62^{\text { }}$	
Balloon diameter_3.66 m	Remarks: 79.3° occulting angle:
Film thickness $0.75 \times 0.75^{\text {Nylar }}$ mil	
Electronics mass 538 gm	* The balloon was part of a flight
Ballast_152_gm gm	series launched for J. Blamont of the
Gross weight less helium_3550 gm	French National Science Research Center (CNRS).
	** Not regular GHOST frequency.
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 01/12/69 1416 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 2.6 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m} \quad 2.6 \mathrm{~m} / \mathrm{sec}$	
Float altitude_16,161 m.	
Radar X	
Compured x	

Telemetry
Code Sensor
$\frac{G}{\frac{M \& R}{V}} \cdot \frac{\text { Sun angle }}{\text { - Cosnic-ray geiger counter }}$
Balloon 非 $222100^{*} \mathrm{KMLR}$
Frequency $\quad 15.043^{* *} \quad \mathrm{MHz}$
Method of leak test_ None

Test results \qquad

- $\quad \therefore \quad$
\qquad

Surface winds_calm_m/sec
Cloud cover $5 / 8 \mathrm{Sc}$
Flight duration days
Number of orbits \qquad
Position last heard \qquad

Probable cause of failure:
\square

Remarks: 79.3° occulting angle.

* The balloon was part of a flight series launched for J. Blamont of the French National Science Research Center (CNRS).
${ }^{*} *$ Not reguilar GHOST frequency.

Telemetry

Code . Sensor
$\frac{K}{\frac{M \& R}{L}} \frac{\text { Sun angle }}{\text { Cosmic-ray geiger counter }}$

GHOST BALLOON FLIGHT SUMMARY

Free lift_20\% 710 gm

Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_ 07/12/69 1441 UT
Ascent rate
$0-5,000 \mathrm{~m}$ \qquad $2.78 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad 2.88 \mathrm{~m} / \mathrm{sec}$
Float altitude \qquad .16,024 m

Radar \qquad -

Computed $\quad \mathrm{x}$ x

Surface winds_calm_m/sec
Cloud cover clear
Flight duration_days
Number of orbits \qquad
Position last heard \qquad

Probable cause of failure:

Remarks: 79.3° occulting angle.

* The balloon was part of a flight series launched for J. Blamont of the French National Science Research Center (CNRS).
** Not regular GHOST frequency.
Te lemetry

Code	Sensor
\underline{L}	Sun angle
M\&R	Cosmic-ray geiger counter
D	Air temperature

GHOST BALLOON FLIGHT SUMMARY

Bailoon \#\#_ 22410-**xZR	Surface winds calm m/sec
Frequency_15.046 $\quad \mathrm{MHz}$	Cloud cover_clear
	Flight duration__ days
Method of leak test. None	Number of orbits
Test results	Position last heard
	Probable cause of failure:
Mfr. balloon 非Raven 142	
Balloon mass_2836 gm	
Balloon volume $\quad 25.62 \quad \mathrm{~m}^{3}$	
Balloon diameter 3.66 . m	Remarks: 79.3° occulting angle.
Film thickness $\underbrace{0.75 \times 0.75{ }^{\text {Mylar }} \text { mil }}$	
Electronics mass 554 gm	The balloon was part of a.flight
Ballast_ 160 gm	series launched for J. Blamont of the
Gross weight less he lium 3550 gm	French National Science Research Center (CNRS).
Free lift 20\% 710 gm	
	** Not regular GHOST frequency.
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 4^{4} 3^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 07/12/69 1448 UT	
Ascent rate	
$0 .-5,000 \mathrm{~m} \quad 2.60 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$ 2.78 m/sec	
Float altitude__ $16,024 \mathrm{~m}$	
Radar x	
Computed_X	

Te lemetry
Code -
Sensor
$\frac{\mathrm{X}}{\frac{M \& R}{Z}} \xrightarrow{\text { Cosmic-ray geiger counter }}$

Bal100n \#_225757 F*	Surface winds $010^{\circ} \quad 5.65 \mathrm{~m} / \mathrm{sec}$
Frequency_15.027 ${ }^{\text {a }}$	cloud cover $1 / 8 \mathrm{Sc} ; 5 / 8 \mathrm{Ac} ; 7 / 8 \mathrm{Ci}$
	Flight duration_2 days
Method of leak test Freon	Number of orbits 0
Test results \qquad and repaired	Position last heard_(08/12/69)
	Probable cause of failure: \qquad Ice on balloon
Mfr. balloon 洮 Raven	
Balloon mass_1810 gm	\cdot
Balloon volume ${ }^{\text {- }} 3.37 \quad \mathrm{~m}^{3}$	
Balloon diameter_1.86 m min	Remarks: 82.7° occulting angle.
Film thickness_1.5 ${ }^{\text {P }} 1.5$ Mylarmil	
Electronics mass_ 186 Ballast 802^{*}	790 gm of Freon 11 ascent ballast was used in balloon.
Gross weight less helium 2798 gm	
Free lift_13\%_364 gm	
Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time_07/12/69 2230 UT	
Ascent rate	
0 - Altitude_ $3 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$	
Radar_ x	
Computed_X_X	
Telemetry	
Code Sensor	
F Sun angle	
-	
- .	

GHOST BALLOON FLIGHT SUMPARY

	Surface winds calm m/sec
Frequency $15.045^{* *} \quad \mathrm{MHz}$	Cloud cover clear
	Flight duration . ${ }^{\text {days }}$
Method of leak test_ None	Number of orbits
Test results	Position last heard
	Probable cause of failure:
Mfr. balloon \#\# Raven 139	
Balloon mass_2810 gm	
Balloon volume $\quad 27.4 \quad \mathrm{~m}^{3}$	
Balloon diameter_3.66 m	Remarks: 79.3° occulting angle.
Film thickness 0.75×0.75 Mylaril	
Electronics mass_558_gm gm	\% The balloon was part of a flight
Ballast_182 gm	series launched for J. Blamont of the
Gross weight less helium 3550 gm	French National Science Research Center (CNRS).
Free lift 20\% 710 gm	
	**Not regular GHOST frequency.
Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 13/12/69._1207 UT	
Ascent rate	
$0-5,000 \mathrm{~m}$ m/sec	
$\dot{5}, 000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}^{\text {. }}$	
Float altitude $16,200 \mathrm{~m}$	
Radar	
Computed_ x	

Telemetry
Code . Sensor

L	Sun angle
$M \& R$	Cosmic-ray geiger counter
W	Air temperature

GHOST BALLLOON FLTGHT SUMMARY

Method of leak test None
Test results \qquad
\cdots

Balloon mass 2828	2828 gm
Balloon volume 27.4	$27.4 \quad \mathrm{~m}^{3}$
Balloon diameter 3.66	3.66 m
Film thickness_0.75 0.75	$\times 0.75 \begin{gathered}\text { Mylar } \\ \text { mil }\end{gathered}$
Electronics mass 538	538 gm
Ballast 184	184 gm
Gross weight less helium_3550 gm	
Free lift 20\%	710 gm

Surface winds calm $\mathrm{m} / \mathrm{sec}$
Cloud cover clear
Flight duration \qquad
Number of orbits \qquad
Position last heard \qquad

Probable cause of failure:

Remarks: 79.3° occulting angle.

* The balloon was part of a flight series launched for J. Blamont of the French National Science Research Center (CNRS).
** Not regular GHOST frequency.

Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 13/12/69 1211 UT
Ascent rate

$$
0-5,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}
$$

$$
5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}
$$

Float altitude \qquad
$16,200 \mathrm{~m}$
Radar \qquad
Computed x

Telemetry
Code Sensor
$\frac{\mathrm{F}}{\frac{\mathrm{M} \mathrm{\&} R}{\mathrm{G}} \quad \frac{\text { Sun angle }}{\text { Cosmic-ray geiger counter }}}$

91.

GHOST BALLOON FLIGHT SUMMARY

Balloon 非_ 230037 FRCW		
Frequency	15.027	MHz

Method of leak test None

Test results
Con_

Mfr. balloon 将 Rvn 104 Rvn 149^{*} Balloon mass 25,719 1338 ${ }^{*}$ gm Balloon volume $751.5 \quad 4.19^{*} \quad \mathrm{~m}^{3}$ Balloon diameter $\frac{11.28 \quad 2.0}{} \quad \mathrm{~m}$
 Electronics mass \qquad 817 gm Ballast \qquad 4596 gm Gross weight less helium_31,146 gm Free 1ift $7.9 \% \quad 2460$ gm Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$ Launch time 26/12/69 1423 UT Ascent rate
$0.5,000 \mathrm{~m}$
$5,000-10,000 \mathrm{~m} \quad 2.3 \mathrm{~m} / \mathrm{sec}$
Float altitude

Radar \qquad
Computed \qquad x

Te lemetry
Code Sensor

F	
$\frac{R}{C}$	$\frac{\text { Sun angle. }}{\text { Strain }}$
W Top cap temperature	

Surface winds 020°
Cloud cover $1 / 8 \mathrm{sc}$
Flight duration
Number of orbits
Position last heard

Probable cause of failure:
Electronics failure
\qquad

Remarks: Balloon was equipped with a metalized Mylar cap. Flight equipped with battery pack with water containers. Strain gage band length, 101.6 cm .
81.45° occulting angle.

* Tow balloon.

**The tow balloon film is a trilam of 0.5 mil Mylar, 1 mil saran, and 0.5 mil Mylar.

Appendix I

SUPERPRESSURE FLIGHTS AT LOW ALTITUDES

Superpressure balloons have flown in the stratosphere for periods in excess of one year. From the tropopause down to the freezing level, icing in supercooled clouds, frost formation at night, and accretion of ice particles can all cause balloon failure. Evidence to date indicates that the primary causes of failure are: ice-particle accretion in cirrus clouds at 200 mb (average life of five months); frost formation at night at 300 mb (average life of 40 days); supercooled water droplet icing at altitudes from 400 mb down to the freezing level (average life of 20 days). .

Below the freezing level a balloon may fail because it accumulates a weight of liquid water that exceeds the free lift of the balloon. Wax treatment of the balloon surface can reduce water accumulation to below a critical mass, allowing flight to continue.

RAINFALL ON A BALLOON

Effective Pressure of Raindrops

A balloon flying below the freezing level may be subject to extremely heavy rainfall for short periods of time. The instantaneous rainfall rate will rarely exceed $10 \mathrm{in} . / \mathrm{hr}$ over a 1 min interval. During a two-week period the probability of rainfall at this intensity is less than 2% for the rainiest area in the United States ${ }^{*}$ and should be even less over tropical ocean areas. The mass concentration of water in a rain of this intensity is $\sim 10 \mathrm{gm} / \mathrm{m}^{3}$, and the average fall velocity of the droplets is $7 \mathrm{~m} / \mathrm{sec}$. Hence, a $10 \mathrm{in} . / \mathrm{hr}$ rainfall would deposit $70 \mathrm{gm} / \mathrm{m}^{2} \mathrm{sec}$ on a horizontal surface. The effective pressure exerted by rebounding raindrops on the surface of a balloon with 1 m radius

[^2]would be $49 \mathrm{gm} / \mathrm{m}^{2}$. For spherical balloons with radii $>1 \mathrm{~m}$ and for all cylindrical balloons the effect of rebounding raindrops can be neglected for rainfall rates < $10 \mathrm{in} . / \mathrm{hr}$.

Mass Increase Due to Raindrops

The following analysis pertains to spherical and long cylindrical balloons. Assume the water adhering to the balloon surface to be $W \mathrm{gm} / \mathrm{m}^{2}$. For a spherical balloon the loss of lift is $4 \pi \mathrm{r}^{2} \mathrm{~W}$, and the percent loss of lift is

$$
\begin{aligned}
& \text { sphere: } \frac{4 \pi r^{2} W \times 100}{4 / 3 \pi r^{3}}=\frac{300 \mathrm{~W}}{\mathrm{r} \mathrm{\rho}} \\
& \text { cy1inder: } \frac{2 \pi r \ell W \times 100}{\pi r^{2} \ell}=\frac{200 \mathrm{~W}}{r \rho}
\end{aligned}
$$

At low altitudes a 1% loss of lift corresponds to a 90 m loss of altitude. Assuming $\rho=1100 \mathrm{gm} / \mathrm{m}^{3}$, the loss of altitude in meters can be approximated as

$$
\begin{aligned}
& \text { sphere: } 90 \times \frac{300 \mathrm{~W}}{\mathrm{r} \rho}=\frac{27 \times 10^{3} \mathrm{~W}}{1100 \mathrm{r}} \sim \frac{25 \mathrm{~W}}{\mathrm{r}} \\
& \text { cy1inder: } 90 \times \frac{200 \mathrm{~W}}{\mathrm{r} \mathrm{\rho}}=\frac{18 \times 10^{3} \mathrm{~W}}{1100 \mathrm{r}} \sim \frac{17 \mathrm{~W}}{\mathrm{r}}
\end{aligned}
$$

REQUIREMENTS FOR WAX SURFACES

A reasonable criterion for low-level flight through clouds or rain is that the altitude loss should not be $>300 \mathrm{~m}$ under conditions. of heavy rain. It is not necessary for the balloon to survive the severest rainfall conditions since an average life of two weeks in the tropical ocean areas is considered acceptable.

Even in a light rainfall or in flight through clouds a balloon can accumulate a water load that will force it.to the earth's surface . unless the balloon skin is treated with water repellents. Since a spherical balloon of 1 m radius will lose 25 m of altitude for each $\mathrm{gm} / \mathrm{m}^{2}$ of surface water, the maximum permissible accumulation of surface water is $12 \mathrm{gm} / \mathrm{m}^{2}$. A 1 m radius balloon is very large for lowlevel flights. Larger spheres would have better water-carrying capabilities, but would need thicker walls to withstand flight stresses.

Since a cylindrical balloon of 0.5 m radius will lose 34 m for each $\mathrm{gm} / \mathrm{m}^{2}$ of surface water, the maximum permissible surface water is $9 \mathrm{gm} / \mathrm{m}^{2}$. Surface coatings must thus maintain water accumulations below this value in order to permit flights by cylinders and prolate spheroids for periods of two weeks or longer. A coating with poor repellency will result in too large an altitude drop in clouds and rain. A coating which allows accumulations $>30 \mathrm{gm} / \mathrm{m}^{2}$ will result in bailoon descent to the earth's surface (see Table 1).

TESTS OF WATER-SHEDDING COATINGS

In 1966 a number of balloon surface coatings were tested to determine their water- and ice-shedding capabilities. No coatings were able to prevent severe accumulations of ice particles formed in a supercooled water droplet environment. The new silicone-base waxes shed water poorly. A household aerosol used for polishing furniture. (Pledge Wax, manufactured by S. C. Johnson \& Son) gave the best test results when used on a number of flights from Christchurch, but was unable to prolong average balloon life beyond three to four days. A retesting showed that the wax deteriorated or was leached from the surface by several hours of continuous rain. After a few months of storage, it also lost its effectiveness on the surfaces of factorytreated balloons.

Subsequently, a careful testing program was initiated using the most promising water repellents. One meter lengths of Mylar were wax coated, tested, exposed to sun and rain, and then retested. The

Table 1

HEIGHT LOSS IN METERS CAUSED BY WATER OR BALLOON SURFACE

$\begin{gathered} W \\ \left(\mathrm{gm} / \mathrm{m}^{2}\right) \end{gathered}$	Spherical Balloon				Cylindrical Balloon			
	Radius (m)				Radius (m)			
	0.8	1.0	1.2,	1.4	0.4	0.5	0.6	0.7
10	310	250	210	180	420	330	280	240
20	620	500	420	360	840	660	560	480
30	930	750	630	540	1260	1000	840	720
40	1240	1000	840	720	--	1330	1120	960
50	--	1250	1050	900	--	\cdots	1400	1200

Table 2
test of hater repellents

	Before Aging		After Aging**	
Sample panels*	```Water adhesion 1min after spraying (gm/m```	```Warer adhesion 3min after spraying (gm/m2)```	```Water adhesion 1min after spraying (gm/m```	```Water adhesion 3min after spraying (gm/m}\mp@subsup{m}{}{2```
A	50.3	47.5	45.9	44.3
B	42.1	40.2	44.0	41.7
6	12.4	$8.8{ }^{\circ}$	40.7	37.5
D	22.3	20.6	40.8	38.4
E	25.2	24.5	4.4	3.9
F	- 46.2	44.0	53.0	51.5
x	9.2	8.3	$4] .2$	36.6
Y	20.8	14.1	61.0	59.9

* A-Not washed, not waxed

B-Not waxed, washed with detergent
C--Pledge Wax (S. C. Johnson \& Son)
D--Fluo-ken (Bel*Art Products)
E-Lochheed water repollent (Lockhecd-Gcorgia Corpany)
F--cleaning and polishing compound, plascic, Type 1 GSA
X-Commercial grace polyethylene (wax-lihe surface as a result of manufacturing-process)

Y--Rain-Boe Type 3 water repellent (Boeing Company)
${ }^{* *} 48 \mathrm{hr}$ rann
5 days sumshine
5 nights heavy frost
results are listed in Table 2. After extensive tests, the only acceptable water repellent found was one under development for the U.S. Navy by Lockheed-Georgia; this coating improved with age for several days before beginning to deteriorate. All others failed to meet minimum standards under any conditions or deteriorated rapidly after exposure.

FLIGHT TEST 196903 L

On 23 April 1969, a cylindrical balloon coated with Pledge Wax was flown in moderate to heavy rain. Radar track was maintained for 64 min ; the radar oscilloscope showed moderate to heavy precipitation throughout this period. A plot of the first 50 min of flight is shown in Fig. 1. The balloon rose to an altitude of $\sim 750 \mathrm{~m}, 5 \mathrm{~min}$ after launch. Theoretical altitude was 1424 m . As water accumulated, the balloon descended to an average altitude of 470 m ; as water was shed, it oscillated $30-40 \mathrm{~m}$. The average float altitude of 470 m corresponds to a water accumulation of 596 gm (i.e., $21.2 \mathrm{gm} / \mathrm{m}^{2}$ of balloon surface).
\because
JOHNSTON ISIAND TESTS (FLIGHTS 212902 L THROUGH 218908 J)
Seven balloons identical to the one flown on 23 April 1969 were flown from Johnston Island in November 1969. Average flight duration was two days--an unsatisfactory performance since these balloons were treated with a current sample of the Lockheed-Georgia water repellent. Before aging, the repellent gave values of $32 \mathrm{gm} / \mathrm{m}^{2}$; after two weeks of aging it gave values from 22 to $29 \mathrm{gm} / \mathrm{m}^{2}$. These results were well above the maximum permissible value of $9 \mathrm{gm} / \mathrm{m}^{2}$.

SLMMARY

A cylindrical balloon with an adequate long-life wax coating will survive conditions of intense rainfall with only a slight loss of altitude. A development program will be required to produce a wax capable of consistent performance. Since one entirely satisfactory sampt has been produced, development should be riadily accomplished.

Fig. 1 Flight test 196903 L.

Appendix II

BALLOON STRAIN DATA ANALYSES

PHASE II FLIGHT ALOFT AS OF 1 DECEMBER 1968

Flight 130101 XZ was launched 21 April 1968 and flew for 319 days. Initially the balloon maintained a strain of 0.4%. No data were obtained for a four-week period while the balloon was too far south in the Antarctic night (14 July to 11 August 1968). When it was heard again, the strain had decreased to 0.25%, where it remained until the beginning of November, and then began a slow increase. By mid-January 1969, the strain had increased to $\sim 0.53 \%$; it then began a gradual decrease, and by mid-April had reached the value recorded at launch. During the last several weeks of flight, the strain slowly increased to $\sim 0.6 \%$.

Maximum strain during the flight was slightly in excess of 1.0% and was attained at the end of the first month. The minimum strain occasionally went to $<0.1 \%$. At the end of this flight the average maximum and minimum strains were 0.68 and 0.5%, respectively.

Strain data showed a marked seasonal variation but showed no evidence of leakage or electronics failure. Flight termination was apparently caused by sudden balloon failure.

PHASE III FLIGHTS TO 31 DECEMBER $19 \dot{69}$ (30 mb)
Flight 162033/6 D/P was launched on 23 October 1968, and remained aloft for 172 days. The data show a slow increase in average strain from $\sim 0.6 \%$ at launch to $\sim 0.64 \%$ in early December. A slow decrease to $\sim 0.54 \%$ occurred by the end of March when the flight terminated. Maximum strain exceeded 0.9% in the ninth week of flight
and again in the eighteenth week, Minimum strain seldom fell below 0.2%. Flight termination was apparently caused by sudden balloon failure.

Flight 163036/2 A/V was launched on 29 October 1968, and remained aloft for 141 days. Strain data were scanty and erratic, although average strain seems to have been 0.5%. One month before the flight ended, the strain data indicated nearly 0% strain for three consecutive days (18-20 February). The next data received showed an increase to 0.95% (27 February) and a decrease to 0.6% the next day. Insufficient data exist to draw firm conclusions about balloon performance.

Flight $164035 / 6 \mathrm{P} / \mathrm{QWXBCA}$ burst on reaching float altitude. The balloon was a doubloon with a 1 mil Mylar outer balloon, and a 0.5 mil saran inner balloon. The flight train employed a drag parachute which was unsuccessful in slowing the ascent rate; just below float altitude the ascent rate was $465 \mathrm{~m} / \mathrm{min}$.

Flight 165031/6 U/FAGKYD flew for five days. The strain feli from 0.45% for the first two days of flight to 0.15% on the fourth day. Strain data show that the balloon developed a leak on the second day of flight.

100 mb FLIGHT
Flight 153104 GH was launched on 27 September 1968, and remained aloft for 89 days. Strain data through the end of November showed an average strain of $\sim 0.4 \%$ with no indication of leakage. The most likely cause of flight termination was sudden balloon failure.

200 mb FLIGHTS
Flight 157228 LJ , equipped with a top cap and a strain gage, was launched on 10 October 1968, and remained aloft for 121 days. It was launched simultaneously with flights 156224 UF and 158226 DC.

The 156224 UF balloon, also equipped with a top cap but without a strain gage, stayed aloft for 126 days. The 158226 DC balloon, equipped with a strain gage but without a top cap, flew for 107 days.

Data for flight 157228 LU , although somewhat sketchy, indicate an average strain of 0.95%. On one occasion, toward the end of November, the strain fell to 0.15%, then rose to 0.6%. This may have been due to ice accumulation despite the top cap. The last data received showed a strain of 0.95%. Flight termination was probably caused by sudden balloon failure or by icing.

Flight 158226 DC flew for 107 days. For the first five weeks strain remained between 0.5 and 0.6%. It then fell at the rate of 0.05% per week until 4 December. Transmissions were not heard again until 23 January 1969, when minimum strain was 0% and maximum strain was 0.21%; the flight ended the next day. Flight termination was probably caused by a small leak which appears to have developed in the sixth week.

Flights 160206 BK and $161204 \mathrm{AR}-\mathrm{H}$ were the second and third of three flights launched on 16 . October 1968. Both balloons had strain gages but no top caps; the first balloon (159203 L), which flew for 107 days, had neither strain gage nor top cap. The initial average strain on 160206 BK was 0.9%, but it decreased to 0.75% by the end of the second week. Thereafter, it slowly increased to 0.95% by the end of flight. On one occasion, minimum strain fell to 0.2%, but returned to 0.9%, probably because of icing. The balloon flew for 118 days. Probable causes of flight termination were sudden failure or excessive ice-particle accretion. Average strain on 161204 AR-H was 0.8%, with one wide excursion in maximum to minimum strain recorded in the second week of flight ($0-0.8 \%$). This strain variation was due to excessive ice accumulation overnight. The balloon flew 107 days. Probable causes of flight termination were sudden. balloon failure or excessive ice-particle accretion.

Fifght 1.66405 CV , equipped with a metalized Mylar top cap, was launched 22 November 1968, and remained aloft for 68 days. Average strain. was $\sim 0.8 \%$; however, during the first three days, maximum strain increased from 0.74% to 0.9% to 1.5%, and the minimum strain was $\sim 0.62 \%$. Since there was no indication of leakage, the probable cause of flight termination was severe icing.

Flights 167406 DL and 168401 AP were launched on 26 November. 1968. The first balloon was equipped with a top cap but flew only three days; the second balloon had no top cap and flew for eight days. Icing was the probable cause of termination for both flights.

Flights 177405 QU and 178402 NK were launched on 19 December 1968. Balloon 177405 QU was equipped with a top cap and flew for 29 days. Average strain was $\sim 0.85 \%$, with three marked departures: on the seventh day the strain decreased from a 0.15% minimum to 0.5% maximum; on the thirteenth day, the strain was 0-0.33\%, and on the last day, 0-0.14\%. Despite the warmer gas temperature maintained by the top cap, the balloon iced at night when exposed to a great number of supercooled water droplets. The third time icing occurred, the accumulation was so great that the top cap was unable to shed ice sufficiently during the day to warm and de-ice the balloon; consequently it came down that night. Minor icing was indicated on three other-occasions during this flight.

Flight 178402 NK provided only seven days of usable strain data. It had an average strain of slightly under 0.6% since there was no top cap. On the seventh day of flight there was some indication of icing, but not as severe as that experienced by 177405 QU on the same day. On the twenty-fourth day (when 177405 QU experienced minor icing) 178402 NK was forced down because of excessive icing.

800 mb FLIGHTS
Flight 176803 NDHU was launched on 10 December 1968 and flew for six days. Average strain was $\sim 0.35 \%$. Since there was no indication of leakage or sudden balloon failure, the probable cause of flight termination was excessive water accumulation during a storm.

Flight 179805 GN was launched on 2 January 1969 and flew for four days. Average sirain was $\sim 0.6 \%$. Probable cause of termination was excessive water accumulation.

Flight 182802 BG was launched on 24 January 1969 and flew only two days. Average strain was $\sim 0.7 \%$. Probable cause of termination was excessive water accumulation.

Flight 183807 BW was launched on 4 February 1969 and flew for three days. Average strain was $\sim 0.45 \%$. Probable cause of termination was excessive water accumulation.

Flight 185801 PU was launched on 17 February 1969 and flew for five days. Average strain was 0.3%. Probable cause of termination was excessive water accumulation.

Flight 186803 DR was launched on 18 February 1969 and flew for four days. It produced the best strain data for the series. Average strain for the first three days was 0.4%, with a maximum strain of 0.48% occurring on the last day. On the same day, the strain fell to 0%, indicating that a hole developed or excessive water accumulated on the balloon. Data for previous flights in this series indicate that the latter difficulty was the probable cause of flight termination.

SUMMARY

Of the six balloons flying at 30 and 10 mb , one burst because of too-rapid ascent, one developed a leak, and four indicated no problems.

- Of the four balloons flying at 200 mb , one developed a leak, while the other three provided evidence that ice-particle accretion in cirrus clouds can cause flight termination despite the protection of a metalized Mylar top cap. While the number of flights was too small to yield firm conclusions, it appears that a top cap is nevertheless advantageous in all but the most severe icing conditions.

Of the five balloons flying at 400 mb , one developed a leak, the others provided evidence that ice accumulation from supercooled water droplets is the major problem at 400 mb as it is at 200 mb . Again, as with the 200 mb flights, the top cap helped in all but the most severe conditions.

All six balloons flying at 800 mb indicated that excessive water accumulation was the cause of flight termination. This problem is discussed in Appendix I.

[^0]: $\bar{*}_{\text {Top-capped }}$

[^1]: ${ }^{*}$ Top-capped

[^2]: *Yarnell, D. L.: Rainfall intensity frequency data: U.S. Dept. of Agriculture MiscelZaneous Publication Mo. 204, August 1935.

