research

Stochastic Matrix Product States

Abstract

The concept of stochastic matrix product states is introduced and a natural form for the states is derived. This allows to define the analogue of Schmidt coefficients for steady states of non-equilibrium stochastic processes. We discuss a new measure for correlations which is analogous to the entanglement entropy, the entropy cost SCS_C, and show that this measure quantifies the bond dimension needed to represent a steady state as a matrix product state. We illustrate these concepts on the hand of the asymmetric exclusion process

    Similar works