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A tree tensor network variational method is proposed to simulate quantum many-body systems
with global symmetries where the optimization is reduced to individual charge configurations. A
computational scheme is presented, how to extract the entanglement spectra in a bipartite splitting
of a loopless tensor network across multiple links of the network, by constructing a matrix product
operator for the reduced density operator and simulating its eigenstates. The entanglement spectra
of 2×L, 3×L and 4×L with either open or periodic boundary conditions on the rungs are studied
using the presented methods, where it is found that the entanglement spectrum depends not only
on the subsystem but also on the boundaries between the subsystems.

I. INTRODUCTION

The entanglement entropy, a distinct property of quan-
tum systems, is the most valuable resource in quan-
tum computation and the main object of interest in
the field of quantum information.1 Low degree of en-
tanglement of quantum states at zero temperature is
featured in efficient description of quantum systems by
approximate computational methods such as the Den-
sity Matrix Renormalization Group (DMRG),2–4 meth-
ods based on matrix product states5–10 or generalized
tensor networks.11–14 In condensed matter physics, a con-
nection was made between the entanglement entropy and
quantum critical phenomena where it was found15,16 that
quantum critical systems are characterized by a logarith-
mic violation of the area law17 with a central charge cor-
responding to the underlying conformal field theory.18

The entanglement entropy, as the logarithmic sum of
the eigenvalues of the reduced density matrix, ρreduced

resulting from a partition of a quantum system, does
not capture all the information available in ρreduced. Its
full spectrum had been previously studied for intution
into the operation of the DMRG algorithm.19–21 More
recently it was discovered22 that the spectrum, not of
ρreduced, but of the related operator log ρreduced, pro-
vided insight into the topological nature of the quan-
tum state from which ρreduced was derived. In Ref. 22 it
was demonstrated that the spectrum of log ρreduced aris-
ing from a ν = 1/3 quantum Hall state matched that
of the compactified bosonic theory expected to described
the ν = 1/3 edge state. This correspondence in sys-
tems with topological order has now been extensively
elaborated on in quantum Hall systems.23–31 This flurry
of work prompted exploration of other systems, systems
which were not necessarily topological. Entanglement
spectra was studied for insight into the behaviour of crit-
ical and non-critical one dimensional systems,32–35 for the

detection/reflection of topological order in one dimen-
sional spin chains,36 and two dimensional non-topological
systems.37,38

Of particular relevance for the work herein, there have
been a number of studies of the entanglement spectra of
quasi-one-dimensional systems such as spin ladders39–41

where a lengthwise partition of the system was consid-
ered. So in the case of a ladder geometry, a partition
of the system cutting the rungs of the ladder was stud-
ied. Remarkably for such partitions the entanglement
spectra reflected the true spectra of the partitioned sub-
system. So in the case of Heisenberg spin ladders di-
vided into two spin chains, the entanglement spectra ap-
peared to share characteristics of the spinon spectrum
of a Heisenberg spin chain,39 in particular the entangle-
ment spectra followed the des Cloizeaux-Pearson lower
spinon boundary.42 This observation was sharpened in41

where is was shown for ladders with weak spin-spin cou-
plings along the leg, the entanglement Hamiltonian was
exactly that of the Heisenberg spin chain. One of the
aims of this paper is to study the entanglement spectra
of multi-legged ladders.

To achieve this goal we must first surmount the prob-
lem that it remains computationally expensive to extract
the entanglement spectra for nontrivial geometries. We
can of course always have recourse to exact diagonaliza-
tion but this limits us to the study of relatively small
systems. While it is trivial to extract the entanglement
spectrum in a bipartite splitting of quantum chains us-
ing linear tensor network methods such as DMRG where
the eigenvalues of the reduced density operator are in-
herent to the computational scheme, the entanglement
spectrum in a splitting of the systems where several links
in the tensor network are broken poses an exponentially
difficult problem. And this supposes we are even able
to describe accurately the ground state of the model of
interest. If the model is defined on the lattice and if one
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spatial dimension is sufficiently small, the ground states
of such systems are again well approximated by DMRG.
However the geometry in which DMRG is typically run
does not lend itself to the computation of entanglement
spectra in which a multi-leg ladder system is divided into
subsystems, each consisting of several legs of the lad-
der. One solution may be found in the approach taken
in Refs. 38,43 where two dimensional systems are studied
with a one dimensional DMRG algorithm with the caveat
that the two dimensional systems is realized as an array
of one dimensional continuum (not lattice) systems. If we
wish to study fully two dimensional pure lattice systems,
we will likely need recourse to more powerful but consid-
erably more computationally demanding methods such
as PEPS11 or MERA.13 It has already been shown that
for certain types of translation invariant two dimensional
models on an infinite lattice that the entanglement spec-
trum can be computed via the transfer matrix product
operator.44

In this manuscript we propose a tensor network
method to describe quasi-one dimensional quantum sys-
tems with the help of tree tensor networks. The method
is especially suitable to describe ladders with nonuniform
coupling strengths while its computational advantage lies
in the ability to optimize individual charge sectors effi-
ciently for systems with a global symmetry. This allows
us to achieve higher bond dimensions and thus higher ac-
curacies. Most of all, it offers a convenient way to extract
the entanglement spectra by a straight forward compo-
sition of the tensor network description for the reduced
density operator for which the eigenvectors (and thus the
entanglement spectrum) can be extracted using the ex-
isting tools such as the DMRG2 or vNRG.45

Using this method we will revisit the connection be-
tween the entanglement spectrum and the energy spec-
trum of the real reduced system. We will study systems
of two, three, and four leg ladders. We will demonstrate
that the entanglement spectra for three and four leg lad-
ders is not simply related to the real spectrum of the
subsystems resulting from a partition. We will however
confirm the general thrust of Ref. 35 that the entangle-
ment spectrum is affected by the boundaries separating
the reduced system from the rest.

II. METHOD

We consider a Heisenberg spin- 1
2 model on a m × L

ladder defined with Hamiltonian operator

H =

m∑
i=1

L∑
j=1

(
Jleg~σi,j · ~σi,j+1 + Jrung~σi,j · ~σi+1,j

)
(1)

where ~σ = (σx, σy, σz) denotes a vector of Pauli matri-
ces. We assume antiferromagnetic couplings and impose
open boundary conditions on the legs (index j) and ei-
ther open (Fig. 1a) or periodic (Fig. 1b) boundary con-
ditions on the rungs (index i). We allow the couplings

(a) (b)

Jrung

Jleg

FIG. 1: Heisenberg model on a ladder with three legs with
open (a) or periodic (b) boundary conditions on the rungs.

on the rungs and on the legs to be of a different strength
which we denote as Jrung and Jleg, respectively. The
model conserves the total Sz quantum number given by
Sz = 1

2

∑
i,j σ

z
i,j which allows us to consider different

Sz sectors separately. We shall focus only on the case
Sz = 0 which is also the sector containing the (global)
ground state.

The main objective of this work is to extract the en-
tanglement spectrum, in particular the spectral gap, for
a bipartite splitting of the ground state of the ladder
into two parts along the longer axis, that is by cutting
the rungs of the ladder. We shall put a special em-
phasis on the scaling of the entanglement spectral gap
with the length of the ladder L for various ladder widths
m = 2, 3, 4 and both open and boundary conditions on
the rungs. Intuitively, one might expect that the spectral
gap would be gapless for the 2×L case, gapped for 4×L
case and of yet to be studied nature for the 3 × L, as a
result of the Haldane conjecture.22 Specifically, a single
Heisenberg spin-1/2 chain is gapless, so the entanglement
spectrum for the 2 × L case should be gapless as well,
since the 2 × L ladder can be split into two Heisenberg
chains. A similar reasoning can be made for the 4 × L
case. In the case of a ladder with three legs, one would
expect the entanglement spectrum to correspond to ei-
ther of the two subsystems and would as such be gapped
or gapless which would perhaps even depend on the ratio
Jrung/Jleg. We will present numerical evidence, that this
reasoning is not complete. Our results support a hypoth-
esis that the entanglement spectrum depends not only on
the subsystems but also on the boundary separating the
subsystems. While this argument plays no role for the
2 × L case, it makes a big difference for the 3 × L case
depending on the boundary conditions on the rungs. In
case of periodic boundary conditions, the subsystems are
connected by two boundaries while only one boundary
exists in the case of open boundaries on the rungs. Con-
sequently, we have two different types of entanglement
spectra for a 3× L ladder, although the subsystems in a
bipartite splitting are identical. For the 4×L case the re-
sults suggest a gapped entanglement spectrum regardless
of the boundary conditions on the rung.

The simulation of entanglement spectra requires first
the ground state of the ladder, from which one could in
principle extract the entanglement spectra directly us-
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FIG. 2: A tensor corresponding to a node in a tree tensor
network with at most three neighbors (a). With symmetries,
the tensor is sparse (b).

ing the singular value decomposition. In most cases,
however, such an approach is exponentially hard and it
is advantageous to obtain the reduced density operator
by contracting over a subsystem and then simulate the
eigenstates of the reduced density operator using some
approximate method.

A. Ground state simulation

We shall simulate the ground state of the ladder with
help of tensor networks by representing a quantum state
of the system as a tree tensor network and then optimize
a pair of sites or a single site at a time, such that the
overall energy is minimized, and then proceed to opti-
mize the next pair or the next site. The approach with
optimizing two sites in a tree tensor network is new while
the one-site approach has been used before.14 However,
in our framework we are able to fully exploit the symme-
tries which allows us to operate on the level of individual
symmetry sectors and thus achieve a larger bond dimen-
sion in the network.

Let us first describe a procedure to optimize any tree
tensor network on an arbitrary geometry using varia-
tional principles. In order to reduce computational com-
plexity we assume that each tensor in the network has at
most three neighbors. Our scheme can easily be general-
ized to more than three neighbors, however, this would
make the computational costs grow exponentially with
the number of neighbors. Furthermore, we make a cru-
cial assumption that there a no loops in the tensor net-
work. This requirement allows us to split the network
into two subnetworks by cutting exactly one link. That
said, we define a tree tensor network on nodes µ ∈M by

associating a tensor A
[µ]
i1,i2,i3

to the node µ (see Fig. 2 a).
The node µ is linked to three other nodes and the indices
i1, i2, i3 enumerate different virtual states on the links
1, 2, 3, respectively. Not all nodes have three neighbors
but some might have one or two open (unlinked) legs.
To some of these nodes, let us call them µ∗ ∈ M∗ ⊆ M ,
we associate the physical sites and one of the open links
of the associated tensors plays the role of the physical
index which is the local quantum number in the Hilbert
space for the individual physical site. More specifically, a
physical site j is associated with the tensor A[µ(i)] on the
node µ(i) where the tensor leg i3 is given by the configu-

ration of the site, e..g 0 for spin up and 1 for spin down.

We shall use a formal notation [A[µ]]i1,i2,i3 = A
[µ]
i1,i2,i3

when referring to tensors associated to nodes in the tree

network and [A[µ∗]s]i1,i2,i3 = A
[µ∗]
i1,i2,s

δi3,s when explicitly
referring to the tensors associated with the physical sites.

Let us now write an ansatz for a quantum state Ψ ∈ H
on an arbitrary lattice of n sites by associating n nodes of
the network to the physical sites and adding some other
nodes to connect the network. In total, we represent the
quantum states with a tree network with m ≥ n nodes
as

|Ψ〉 =
∑
s

Tr
[ ∏
µ∈M/M∗

A[µ]
∏
i

A[µ∗(i)]si
]
|s〉 (2)

where we have used an abbreviation s = (s1, s2, . . . , sn)
and the trace operation Tr[•] should be understood as a
tensor trace operation, i.e. summing over all indices on
the links in the graph.

The loopless nature of the network makes it straight-
forward to include the symmetries in the ansatz of Eqn.

(2) by simply making the tensors A[µ] sparse as shown in
Fig. 2 b. To each link we associate an additional quan-
tity, the charge, and require that the sum of all charges,
flowing into the node in the network, equals to some con-
stant value Q = q1 + q2 + q3 which measures the total
charge in the system. In the case of the spin model, the
charges (q1, q2, q3) on the links (1, 2, 3) would correspond
to the total Sz in the sub-graphs connected to the point
µ by the links (1, 2, 3), respectively. All charges should
add up to the Sz in the ground state. If the tensor µ
corresponded to a physical node, then the leg 3 would be
open and q3 would simply correspond to the local quan-
tum number Sz for the physical site. We note that in
the contraction of the tensor network, we must contract
a given charge q with the conjugate charge, i.e. q byQ−q.
Loopless nature of the tensor network also makes it pos-
sible to easily simulate fermionic systems without many
modifications due to the fermionic signs. In such a case,
the charges would correspond to the number of fermions
flowing in from different parts of the network. This rep-
resentation of charge conservation differs from the usual
representation in one dimensional system where the flow
is conserved at each node, by introducing an outflowing
charge which is a sum of all inflowing charges, includ-
ing the local charge at the node, and imposing boundary
conditions where no charge flows into the first site and
the charge that flows out of the last site is equal to the
total charge in the system. The representation we use is
more convenient in the tree tensor network as it does not
require to associate the direction of the flow (for a given
node all charges flow into the node and they sum up to
Q at each node) nor specify the starting and the end-
ing node, which makes is easier to consider completely
generic tree networks without any regular topology. See
also46,47 for a general treatment of symmetries in tensor
networks algorithms.

An arbitrary linear map G : H → H can be represented
as a sum of product linear maps G =

∑
g Og where Og =



4∏n
j=1 o

[g;j] and each local operator o[g;j] acting on the
physical site j is linked to the physical leg of the tensor

Aµ∗(j) as

[o(A[µ∗(j)])]i1,i2,t =
∑
s,t

o
[g;j]
t,s A

[µ∗(j)]
i1,i2,s

.

This operation is completely local to the tensor µ∗(i) and
as such does not increase the bond dimension of the tree
tensor network. An expectation value 〈Ψ|G|Ψ〉 can thus
be obtained by summing up all contributions of the prod-
uct operators

∑
g 〈Ψ|Og|Ψ〉 in parallel where, of course,

many contributions can be merged in the process, e.g the
ones which act in the same sub-network and the like.

The calculation of the expectation values therefore
boils down to the calculation of scalar products 〈Ψ̃|Ψ〉
and since the network is loopless, all the contractions
can be done exactly without using any inverses. The ap-
proach is identical to the one for matrix product states
and as such has been well studied in the literature. An
important difference, though, is that the computational
complexity of contracting the tree tensor network scales
as O(D4) where D is the maximum (typical) dimension
of the bonds (i.e. number of indices on the links) as com-
pared to O(D3) for matrix product states. In case we
allowed four neighbors, the scaling would be O(D5) and
so on.

In order to simulate the ground state, we must find a
way to optimize individual tensor in the network, such
that the total energy of the quantum state (2) is min-
imal. As in the case of one-dimensional systems, there
are essentially two ways of doing that, the two-site (the
DMRG way) and the one-site (the MPS way) optimiza-
tion scheme, both of which have advantages and disad-
vantages.

1. DMRG (two-site) optimization

The two-site optimization scheme is best described on
the sketch shown in Fig. 3: we isolate two nodes in the
network, merge the associated tensors into one bigger
tensor (step i), optimize the bigger tensor such that the
total energy of the system is minimized (step ii), and fi-
nally split the bigger tensor back to two smaller tensors
while keeping the bond dimension under control (step iii).
We repeat the procedure with the next pair of neighbor-
ing sites. This is the main ingredient of the well known
DMRG algorithm to find ground states of quantum sys-
tems on a one-dimensional lattice. We will show that
exactly the same principles can be used also with tree
tensor networks, albeit with a higher computational cost.

The advantage of the two-site optimization is that it
generates the link between the two sites of interest from
scratch and as such can create new charge sectors on the
bonds or increase the number of kept auxiliary states (on
the bond) if required. However, it requires a manipula-
tion of a larger structure (a joint structure describing

(p,i)2

(p,i)4

(p,i)3

(i)

(ii)

(iii)

(p,i)1

FIG. 3: Two site optimization scheme for tree tensor net-
works: two neighboring nodes are merged to one block (i)
which is replaced by the one which minimizes the total en-
ergy (ii), finally, the result is split back into two tensors (iii).

two nodes in the network) and, due to the nature of the
Hamiltonian operator including hopping terms, it also
requires handling several charge configurations simulta-
neously, albeit in a sparse way. Comparing the procedure
in tree tensor networks (Fig. 3) with the DMRG for one-
dimensional lattices, we observe, that here the block of
two sites can be connected to two, one, or none environ-
ments on either side. In the linear DMRG, the block is
always connected to a single environment on either side.
In addition, the environments are connected through the
Hamiltonian, if it involves terms which operate on non-
nearest neighbor terms in the tensor network. When two
neighboring physical sites are optimized, then either of
the sites is connected to exactly one environment and the
problem is translated exactly to the linear DMRG.

Although the two site optimization has not been used
before for optimizing tree tensor networks, the procedure
is essentially the same as for the linear DMRG for which
there already exists vast amount of literature.48–50 Specif-
ically to our case, we only mention that the joint tensor
for two sites is optimized using a sparse Lanczos method
where only 20 Lanczos steps are performed for each pair
of sites, the reason being the computational cost. In the
worst case, when the joint block of sites is connected to
four environments (and the typical bond dimension being
D), the computational cost of matrix-vector multiplica-
tion in the Lanczos algorithm scales as O(D5), compared
to O(D3) for the linear DMRG algorithm. This makes
the approach relatively expensive compared to the one-
site optimization scheme described later. However, the
advantage of creating new charge sectors and suppressing
the insignificant ones makes the method very welcome
for the initial stage of simulation, where a reasonable
approximation for the ground state is obtained from a
completely random initial realization of the tensors gen-
erating the quantum state. For such purposes, even 20
Lanczos steps for each pair is sufficient to generate a good
approximation for the ground state in two or three sweeps
over the network.

2. Variational (one-site) optimization

The main optimization scheme we use to approximate
the ground states of the ladders is the one-site optimiza-
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(p,i)1
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i 3
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1p 2p 3p = ...
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i 3

1
1p 2p 3p = ...

FIG. 4: One site optimization of a tree tensor network: one
charge configuration of a single tensor in the tensor network
is optimized at a time.

tion scheme. In this scheme, we choose a node in the
network, optimize the associated tensor such that the to-
tal energy of the system is minimized, move to the next
node and repeat the procedure. The advantage of this
scheme is that we can reduce the optimization not just
to a single tensor but to a single configuration block in
the tensor, when the symmetries are used. This essen-
tially means that we operate on the level of D3 param-
eters whereas the total number of parameters describing

the tensor A[µ] for a given node µ is a factor of ten to
hundred larger, depending on the allowed total bond di-
mension. A drawback of the scheme is, however, that we
should already have a reasonable approximation for the
ground state, otherwise we will spend unnecessary time
(in the initial stage) optimizing charge sectors which in
the end become completely irrelevant.

Let us now formally write the total energy of the sys-
tem where we contract over all tensors in the network
except for A[µ]. This leads to a description in terms of

an “effective” hamitonian H
[µ]
eff as

〈Ψ|H|Ψ〉 =
∑
(q,i)

A∗(q′,i′)H
[µ] eff
(q′,i′),(q,i)A(q,i) (3)

Here we explicitly use the double index notation q, i
which reflects the sparse nature of the tensors where
q = (q1, q2, q3) denote the charge configuration and
i = (i1, i2, i3) the dense tensor elements for this configu-
ration q. We use the gauge transformations to transform
the tensor network in such a form that the environment
with respect to the node µ is unitary. This allows us to
write the norm of the quantum state in a simple form

〈Ψ|Ψ〉 =
∑
(q,i)

A∗(q,i)A(q,i).

Unless we are dealing with some trivial Hamiltonian
which does not allow transfer of charges, then the charge
configuration p at the node µ is coupled to some other
charge configurations {q} by the effective Hamiltonian

H
[µ] eff
q,q′ . We are therefore not allowed to optimize all

charge configurations in parallel. However, we can fo-
cus on one chosen configuration p and separate all terms
in (3) which contain p from those which do not. For sake

of brevity, let us represent the rank-3 tensors A[µ]
p as vec-

tors ap (equivalent to stacking columns of a matrix to a

long vector). The result reads

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

ap ·H[eff]
p,p ap + bp · ap + ap · bp + f

ap · ap + c2
(4)

where we have introduced the following quantities

bp =
∑
q 6=p

H[eff]
p,q aq

f =
∑
q,r 6=p

bq ·H[eff]
q,r ar

c2 =
∑
q 6=p

aq · aq. (5)

This now allows us to optimize the total energy (4) for
individual charge configuration p, after which we choose
some other charge configuration p′ until we explore all
of them (see the sketch in Fig. 4), at which point we
reconstruct the whole tensor and move to the next node.
The question however remains, how to optimize (4) in an
efficient way.

Let us assume that aq ∈ CN . Obviously, f ∈ R and

c2 ≥ 0. If c2 = 0 then ap is the only configuration for the

tensor and hence ||bp|| = f = 0. If ||bp|| = 0, then the

problem is transformed to an regular eigenvalue problem
where the cost function (i.e. the energy) is minimized by
the eigenvector of H[eff ] with the smallest eigenvalue. We
therefore assume that ||bp|| > 0 and in the following drop

the charge notation p. Let us now consider an hermi-

tian matrix H̃ ∈ C(N+1)×(N+1) with the matrix elements
H̃i,j = H

[eff]
i,j for i, j = 1, . . . , N , H̃N+1,j = H̃∗j,N+1 = bj

and H̃N+1,N+1 = f . We also define a vector y ∈ CN+1

as yi = ai for i = 1, . . . , N and yN+1 = 1, and a diagonal

matrix Ñi,j = δi,j for i = 1, . . . , N and ÑN+1,N+1 = c2.
Obviously, the problem (4) can now be written as an
optimization problem

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

y · H̃y
y · Ñy

under the constraint that yN+1 = 1, known as the gener-
alized eigenvalue problem. Note that we are not free to
rescale the vector a but we can always rescale the vec-
tor y. This problem is converted to a regular eigenvalue
problem if c2 = 1 when Ñ = I. However, we can always
(formally) rescale the whole tensor by 1/c in which case
this would be true but now we also have to transform
f → f/c2, b → b/c and a → a/c. Finally, we solve the
regular eigenvalue problem (by means of the exact diago-
nalization for small N or the Lanczos algorithm for larger
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N), normalize the solution such that yN+1 = 1, and mul-
tiply the solution ai = yi for i = 1, . . . , N again with the
factor c to obtain the solution to the original problem (4).
In this procedure, we rely on a silent assumption that c
is not small. However, it c was small, this would have
a physical meaning that all the other charge configura-
tions are negligible compared to the configuration p and
the solution would negligibly differ from the solution if
we set b = f = c = 0.

To summarize the one-site optimization scheme, we op-
timize one charge configuration of a single tensor at a
time and repeat the procedure iteratively for all charge
sectors in the tensor and for all tensors in the tensor
network, until the convergence is reached. The computa-
tional cost of each Lanczos step in the optimization (i.e.
the cost of Hx) sums up to (m+4)3D4 with no additional
prefactor where m is the number of Hamiltonian terms
which include the node µ (can be zero). This renders
the optimization scheme very efficient in comparison to
the two-site optimization scheme and it is thus possible
to achieve significantly larger bond dimension D than in
the case when many charge sectors are combined into one
large object.14

B. Entanglement spectrum

Let us return to our original problem, that is to sim-
ulate the entanglement spectrum of m × L ladders for
which we have to first calculate the ground state of the
ladder. If the legs of the ladder are weakly coupled, then
they act as effective systems which can be connected to-
gether in terms of a matrix product states. This is the
formulation proposed in Ref. 51 where the ground states
of L×m ladders (see Fig. 5) were simulated using a two-
step DMRG scheme. In this scheme, the legs of ladder
which are linear chains of length L are considered as ef-
fective particles whose local basis is given by the excited
states of the legs, computed by the DMRG with targeting
several low energy excited states. In the next stage, the
ground state of the ladder is obtained by simulating the
ground state of a linear system of m sites where each site
is given by the effective description of the corresponding
leg. While this approach offers a nice physical descrip-
tion in the case of scale separation, it lacks the feedback
mechanism to refine the effective description of the legs
and suffers from high computational complexity of the
second simulation stage where the DMRG is performed
on a system with a large local dimension. Nevertheless,
the same geometry, depicted in Fig. 5 can be treated as
a loopless tree tensor network where the ground state
can be simulated directly, without directly relying on the
scale separation and, being an extension of matrix prod-
uct states, offering a natural way for the feedback mech-
anism. Such a geometry of tensor network is physically
well justified in the case considered in Ref. 51, that is
when the couplings between the legs (i.e. on the rungs)
are fairly weaker than the couplings on the legs them-

s1,1

s2,1 s2,2

s1,2 s1,n

s2,n

sm,n

FIG. 5: Tree tensor network topology to represent quantum
states on ladders as used in Ref. 51.

(a)

(b)

FIG. 6: Bipartite splitting of a ladder along the longer axis
in a direct (a) and a rotated (b) geometry of the tree tensor
network structure.

selves, i.e. Jrung � Jleg. By using this topology, when
two, three or four long legs are connected by a matrix
product state (Fig. 5), it is trivial to obtain the entan-
glement spectrum by simply choosing a link on the top
spin (see Fig. 6 a), reorhorthogonalizing the network from
both sides and performing a singular value decomposition
on the resulting tensor. This however requires that the
legs are only weakly coupled otherwise the required bond
dimension on the top spin grows exponentially with the
length of the ladder.

We will be interested in the opposite scenario, when
Jrung ≥ Jleg, and in such a case the above described pro-
cedure is inefficient for L > 10 even for 2 × L ladders.
In the end we will be interested in scaling of the spec-
tral gap of the entanglement spectrum for which we shall
require much larger systems for consideration. Since we
shall only deal with ladders with up to 4 legs, we shall
exchange the role of legs and rungs and instead consider
L legs of length m = 2, 3, 4. Now, however, obtaining the
entanglement spectrum is far from trivial as cutting the
system along the longer axis produces an exponentially
large reduced density operator (Fig. 6 b). Fortunately, as
we shall see shortly, the density operator can also be con-
sidered as a matrix product operator for which we know
how to extract the excited states, at least the largest
ones, which in our case translates exactly to the largest
eigenvalues of the entanglement spectrum. Another ad-
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vantage of using the rotated geometry is that we can
now easily consider periodic boundary conditions on the
legs because there are only at most physical 4 sites on
each leg and the increase on the bond dimension due to
coupling of the two boundary sites, is negligible, if any.
In order to avoid confusion, we shall continue using the
nomenclature defined in the introduction where the long
chains are called legs and the connections between them
are called rungs as shown in Fig. 1; the rotation of the
ladder should only be regarded as a technical trick.

Let us now assume we have obtained the ground state
of the ladder in a form depicted in Fig. 6 b. We can for-
mally decompose the ground state into two parts where
the part left of the cut in Fig. 6 b is called “the system”
and the part right of the cut is called “the environment”,
by the so called Schmidt decomposition

|Ψ〉 =
∑
k

|ψ[S]
k 〉|ψ

[E]
k 〉

where {ψ[S]
k } and {ψ[E]

k } are orthogonal sets in the sub-
systems S and E. The reduced density operator is ob-
tained by tracing the full density operator |Ψ〉〈Ψ| over

the environment, spanned by an orthonormal set {φ[E]
k },

ρS =
∑
j

〈φ[E]
j |
(∑
k,l

|ψ[S]
k 〉|ψ

[E]
k 〉〈ψ

[S]
l |〈ψ

[E]
l |
)
|φ[E]
j 〉

which can be further simplified using the fact that∑
j |φ

[E]
j 〉〈φ

[E]
j | = 1[E] to

ρS =
∑
k,l

〈ψ[E]
l |ψ

[E]
k 〉|ψ

[S]
k 〉〈ψ

[S]
l |. (6)

The reduced density operator is thus simply obtained
from the ground state by contracting over the physical
degrees of freedom in the environment which is schemat-
ically shown in Fig. 7. The result of the contraction is
a product of two matrix product operators or, finally, a
single matrix product operator. The quantum state de-
scribing the ground state was normalized and thus no ad-
ditional normalization factor appears in (6). Therefore,
the eigenvectors and eigenvalues of the reduced density
operator are precisely the eigenstates of the matrix prod-
uct operator depicted in Fig. 7. This operator, however,
is obtained from a double layer tree tensor network struc-
ture and the bond dimension in its MPO (matrix product
operator) representation can be very large. In order to
simulate its eigenvectors we have to first truncate it to a
manageable size by first eliminating redundant auxiliary
degrees of freedom (by means of matrix factorization)
and then truncating the auxiliary state by retaining at
most 1000 states on each bond (by means of a singu-
lar value decomposition). This truncation procedure is
a standard ingredient in all MPS simulations (see e.g.
Ref. 7). The reduced density operator retains the sym-
metries of the quantum state and as such preserves the
total number of particles or, in our case, the total Sz of

s1

s’1

s’1

s1

s’n

sn

sn

s’n

FIG. 7: The reduced density operator is obtained by tracing
over physical degrees of freedom of the environment.

the subsystem. The tensors in the MPO are therefore
sparse.

Having obtained the reduced density operator in a
form of a MPO, we can calculate the corresponding eigen-
values and eigenvectors. One way to accomplish this
task is to use the DMRG algorithm2 which can, despite
not frequently used for that purpose, target not just the
ground state but several excited states, with the only
condition that the operator is hermitian. This is indeed
the case for the density operator and we can compute a
few of its eigenvalues and eigenvectors by simply plugging
Hρ = −ρ to a ready-to-use implementation of the DMRG
algorithm with targeting (with slight modifications for
the support of matrix product operators). The DMRG
with targeting proves to be fairly expensive, especially
when the local dimension is larger than 2 and when the
Hamiltonian itself is fairly complicated. In comparison
to calculating the excited states of a Heisenberg chain of
length L, calculating the same number of eigenstates of
the reduced density operator for a 2×L ladder is a hun-
dred to thousand times more expensive, simply because
we are dealing with a nonlocal MPO with a bond dimen-
sion 1000 instead of a local MPO with a bond dimension
5 (i.e. for the Heisenberg model); an additional factor
stems from the fact that it is easy to separate the charge
sectors in the Heisenberg model whereas in our case, the
MPO (after truncation) has a more complicated struc-
ture and we have to optimize larger blocks at a time.

An alternative way to simulate the excited states is to
use the variational NRG method45 which can be seen as
a one-site version of the DMRG with targeting. It can
be used in place of the DMRG or as an additional stage
in the simulation to optimize the results obtained by the
preceding DMRG simulation. In both cases, the excited
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states can be described by the following Ansatz

|ψk〉 =
∑

s1,...,sn

tr[L[1]s1 · · ·L[n/2]sn/2XkR[n/2+1]sn/2+1R[n]sn ]

× |s1, s2, . . . , sn〉 (7)

with unitary constraints
∑
i,s L

s
i,jL

s
i′,j′ = δj,j′ ,∑

j,sR
s
i,jR

s
i′,j′ = δi,i′ and

∑
i,j X

k
i,jX

k′

i,j = δk,k′ . These

constraints guarantee that the states in (7) form an or-
thonormal set. The matrices L[j]sj , R[j]sj and Xk are
then optimized by minimizing the cost function

f(L,X,R) = −
∑
k

〈ψk|ρ|ψk〉 = min. (8)

The method was described in detail in Ref. 45. We start
with some initial realization of matrices L, X and R and
update them site by site by minimizing the cost func-
tion (8) under unitary constraints. In this way the set
of states described by the ansatz of Eqn.(7) remains or-
thonormal at all times. Eventually we end up with an ap-
proximation to the eigenstates with the smallest eigenval-
ues which in our setting translates to the singular vectors
corresponding to the largest singular values. The com-
plexity of this simulation scales as O(D3) where D is the
maximal bond dimension in the Ansatz (7); the optimiza-
tion of the central tensor Xk scales as O(D3m) where m
is the number of the excited states ψk described by (7).
For our purposes we choose m = 10 which gives us ten
largest Schmidt coefficients and their singular vectors.
This in turn gives us the entanglement spectrum. Sim-
ilarly to the ground state simulation, it is advantageous
to initialize the tensors in (7) by performing one sweep
of two-site DMRG simulation with targeting which elim-
inates insignificant symmetry sectors and thus reduces
the computational costs of the one site optimization in
the next stage.

In principle, if we only wanted to calculate the spectral
gap between the sectors Sz = 0 and Sz = 1 and not
higher excited states in the entanglement spectrum, it
would suffice to calculate the ground state of the matrix
product operator (e.g. using standard DMRG) for the
reduced density operator in both subsectors.

III. RESULTS

We shall use the methods described in this manuscript
to calculate the low-lying entanglement spectrum of
m×L ladders for m = 2, 3, 4 with either open or periodic
boundary conditions on the rungs (Fig. 1). The simula-
tion proceeds in three steps: we calculate the ground
state of the ladders from which we form a matrix prod-
uct operator describing the reduced density operator in a
bipartite splitting along the long axis. Finally, to obtain
the low lying entanglement spectra, we simulate a few
eigenvectors of this matrix product operator correspond-
ing to the largest singular values.
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FIG. 8: Ground state energy per site for m × L ladders
with m = 2, 3, 4 (top to bottom) with rung-periodic (dotted
lines) and open (solid lines) boundary conditions. In all cases
Jrung = 1. Bond dimensions D used: 20 (cross), 30 (plus).

A. Ground state of the ladders

The ground state of the ladders is obtained in two
steps. First we find a crude approximation for the
ground state by using the two-site optimization scheme
(DMRG-like) and then optimize the results using the
variational one-site optimization scheme. In all cases,
we use an ansatz with symmetries restricting to Sz = 0
subsector. As mentioned previously, we in fact described
the tree tensor network in a rotated geometry (Fig. 6
b), since we consider the ratios between the couplings
Jrung/Jleg = 1, 2, 10.

In the simulation we keep at most 1000 overall states
for each bond in the tree tensor network and at most
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Jleg b 2× L 3× L 4× L
0.1 o −1.50786650301 −1.39739531959 −1.62535055215

0.5 o −1.71869127504 −1.75880276836 −1.86629861886

1.0 o −2.31201208933 −2.40018707942 −2.473345887054

0.1 p −1.09465154452 −2.00733345726

0.5 p −1.56190824628 −2.19712045516

1.0 p −2.27972332710 −2.73289318696

FIG. 9: Extrapolated normalized ground state energies
E0/(m × L) for L → ∞ with m = 2, 3, 4 and open (o) or
periodic (p) boundary conditions. We used D = 30 as the
bond dimension.

D states in each charge sector where D = 20, 30. The
results are presented in Fig. 8 where the points con-
nected by solid lines correspond to open boundary con-
ditions and the dashed lines to the periodic boundary
conditions on the rungs. The bond dimension D used
in simulations is denoted by various symbols: cross for
D = 20 and plus for D = 30. In all cases, the sym-
bols essentially overlap and no visible difference can be
observed. In Figure 9 we give a table of normalized
energies for a fixed bond dimension D obtained by ex-
trapolation the data in the Fig. 8 to L → ∞. The re-
sults agree with Ref. 52 where the extrapolated energy
for a 2 × L ladder with Jrung/Jleg = 1 was found to be
limL→∞E0/(2L) = −2.312 (in our units).

We shall briefly mention the computational parameters
used to obtain the results in Fig. 8. The initial two-site
(DMRG-like) optimization was done by sweeping twice
over the network where at each step the joint tensor was
optimized by performing at most 30 Lanczos iterations.
The result of the DMRG simulation was used as an initial
state for the variational one-site optimization which was
performed until the relative difference between the ener-
gies after two consecutive sweeps became less than 10−14.
The ground state for smaller systems (all 2×L and up to
3× 20 and 4× 12) can be obtained in less computational
time by forgoing the two-site scheme and starting with
the one-site scheme on a random realization of Ψ. How-
ever, for larger systems, it is advantageous to initialize
the state by the DMRG which eliminates the unneeded
charge configurations. The computational time required
to obtain the results shown in Fig. 8 is in the range of a
few seconds to 3 hours in the worst case.

B. Entanglement spectrum

As a benchmark of the method we calculate the en-
tanglement spectrum in a bipartite splitting of a 2 × L
ladder for various ratios Jrung/Jleg. The reduced density
operator is invariant with respect to Sz in the subsystem
and we simulate the most significant values separately for
Sz = 0, 1, 2. The results shown in Fig. 10 are essentially a
reproduction of the results presented in Ref. (39) but for
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FIG. 10: The entanglement spectrum for a 2× 32 ladder as a
function of Jrung/Jleg and various Sz sectors of the subsystem:
Sz = 0 (black circle), Sz = 1 (red cross) and Sz = 2 (blue
plus).

open boundary conditions on the legs and a slightly larger
system size. The entanglement spectra shown in Fig. 10
however differ from Ref. 41 due to different boundary
conditions on the legs. Confirmed by an exact diagonal-
ization for a 2×10 ladder, we find that the second excited
state is a triplet for open boundary conditions as opposed
to a singlet for periodic boundary conditions on the legs.

The entanglement spectrum {ξj} was obtained from
the eigenvalues of the reduced density operator {ρj} as
ξj = − log ρj . For presentation purposes, the “ground
state” (i.e. the lowest state for Sz = 0) was subtracted
from the spectra and the result was multiplied by the
ratio Jrung/Jleg. The charge sectors (Sz) are given by
the shapes of the symbols: a circle for Sz = 0, a cross
for for Sz = 1 and a plus for Sz = 2. Each point is re-
plotted several times corresponding to the different bond
dimensions of the underlying ground state (D) and max-
imal number of states in the representation of the MPO.
Ideally the points should overlap. When they don’t, we
obtain an idea of the uncertainty in the determination of
the spectra. The structure of the low lying entanglement
spectrum (singlet, triplet, . . . ) agrees with the structure
of the energy spectrum for a one-dimensional Heisenberg
spin-1/2 model. We observe that the lowest levels of the
entanglement spectra are well represented for any simula-
tion parameters whereas the excited states require more
computational power and are less precise, the fact known
already from the method of DMRG with targeting many
excited states.

C. Entanglement spectral gap

We will focus in the remainder of this section on com-
puting the entanglement gap. We will be interested in
particular in investigating whether the presence of an
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FIG. 11: Entanglement spectral gap in a bipartite splitting
of 2× L ladders into two chains of length L.

entanglement gap implies a presence of a gap in the ac-
tual spectrum of the subsystem arising from the parti-
tion (and vice versa). We know that this is the case of
two-leg ladders where it was shown in Ref. 39 that the
entanglement spectra associated with the dividing the
ladder into two chains mimicked that of the actual spec-
trum of an individual chain. We verify this observation
by our simulations where we observe (Fig. 11) that the
spectral gap vanishes for N →∞ for all considered ratios
Jrung/Jleg. Here, the symbols denote the bond dimension
of the singular vectors (7) whereas the connecting line
denotes the bond dimension of the corresponding ground
state (dashed for Dvnrg = 10, solid for Dvnrg = 20, dot-
ted for Dvnrg = 30). The results practically overlap in
all cases.

In all cases, including those that follow, we set the
bond dimension for the singular vectors (i.e. the eigen-
vectors of the reduced density operator) described by the
ansatz in Eqn. (7) to Dvnrg = 10, 20, and 30 and no limit
was imposed on the total bond dimensions (sum over all
charge sectors). We considered three different maximal
bond dimensions for the matrix product operator rep-
resentation of the reduced density operator: 700, 900,
and 1100. The corresponding ratio between the minimal
allowed singular value and the maximal one in the bi-
partite splitting of the MPO was 10−7, 10−9, and 10−11,
respectively.

In the case of 3 × L ladders it is not clear what to
expect as we divide the ladder into a chain and a two-
leg ladder. A two-leg Heisenberg spin ladder (with anti-
ferromagnetic interactions) is expected to effectively be-
have as a Heisenberg spin chain of an integer spin and
thus display a gap in the thermodynamic limit whereas
the gap of a single Heisenberg spin-1/2 vanishes in the
thermodynamic limit. It is not a priori clear then which
of these two options the entanglement gap will mimic.
Surprisingly, the results depend on the particular bound-
ary conditions we impose on the rung. We see this in
the numerical results shown in Fig. 12 where we observe
a clear difference between open boundary conditions and
periodic boundary conditions. In the case of open bound-
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FIG. 12: Entanglement spectral gap for the 3×L ladder with
open (top) and periodic (bottom) boundary conditions on the
rungs; the main plots are in the log-log scale, the insets in the
normal scale.
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FIG. 13: Spectral gap of the 3 × L ladder with asymmetric
boundary condition on the rungs, J12 = J23 = 1 and various
J31. In all cases, Jleg = 0.5. The inset shows the spectral gap
versus the system size in a log-log scale.

ary conditions (top) where it suffices to make a single cut
to separate the three leg ladder into two parts, we observe
a similar behavior as in the 2×L case, that is a vanishing
gap for L→∞. However, in the case of periodic bound-
ary conditions on the rungs (bottom) the gap remains
finite for L→∞.

This result is less surprising once we consider that it
has been shown53,54 that the spectrum of the 3×L ladder
itself depends on the boundary conditions. With periodic
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boundary conditions, frustration is present on each of the
rungs on the ladder and the system is seen to be gapped.
As soon as the frustration is removed by making one
bond on the rung weaker or stronger, the system becomes
gapless. We confirm this behavior by computing the gap
of the 3 × L ladders were Jrung are chosen as (1, 1, J31)
with J31 = 0, 0.9, 1 and Jleg = 0.5 . The results shown in
Fig. 13 confirm that the system is gapped at J31 = 1 and
gapless otherwise. Thus we see for the three-leg ladders
the entanglement gap does not necessarily mimic that
of the subsystem arising from the partition, but rather
follows the full system itself.

The behavior of the entanglement for three-leg ladders
has implications for the perturbative (in Jleg) entangle-
ment Hamiltonian. At zeroth order in Jleg the entangle-
ment Hamiltonian for a single chain (supposing we trace
out two legs of the three-leg ladder) must be equal to the
identity,

Hentanglement = a0I +O(Jleg), (9)

where a0 is some constant This follows by SU(2) invari-
ance and that the only SU(2) invariant operator involving
operators sitting at a single site is the identity. At next
order, SU(2) invariance gives the entanglement Hamilto-
nian for the chain as

Hentanglement = (a0+Jlegb0)I+b1Jleg

∑
i

Si·Si+1+O(J2
leg),

(10)
i.e. the Heisenberg Hamiltonian and where b0,1 are con-
stants. This follows as the first order entanglement
Hamiltonian must involve terms which are no more non-
local than nearest neighbor. However such a Hamilto-
nian is necessarily gapless. Thus in order to produced
a gapped entanglement Hamiltonian (as we find for the
case of PBCs) we must consider the J2

leg contribution to
it. While it is beyond our ability to easily compute this
correction, it will involve next nearest interaction terms
that for the case of PBCs lead to a gapping out of the
spectrum.

Finally, we consider the entanglement gap of 4-leg lad-
ders. We first consider the case where we split the system
into two 2×L ladders. Here both subsystems are gapped
and we might expect that the entanglement spectrum is
also gapped regardless of the boundary conditions on the
rungs. The numerical results shown in Fig. 14 confirm
our expectations and we observe a tendency towards a
finite gap for L → ∞, both for open (top) and periodic
(bottom) boundary conditions on the rungs. While the
system sizes considered are insufficient to draw definitive
conclusions, no qualitative difference between open and
periodic boundary conditions can be observed from the
plots.

For the 4×L ladders we can obtain further insight by
analyzing the entanglement Hamiltonian in the weak leg
coupling limit. We first consider the case of open bound-
ary conditions on the rungs at Jleg = 0. The ground state
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FIG. 14: Entanglement spectral gap for a bipartite splitting
of a 4× L ladder into two 2× L ladders for the ground state
of the ladder Heisenberg Hamiltonian with open (top) and
periodic (bottom) boundary conditions on the rungs.

of the ladder in this case is

|GS〉 = ⊗i|s〉i (11)

where |s〉i is the lowest lying singlet state on a rung:

|s〉i = α(| ↑↑↓↓〉+ | ↓↓↑↑〉) + β(| ↑↓↓↑〉+ | ↓↑↑↓〉)

+γ(| ↑↓↑↓〉+ | ↓↑↓↑〉), (12)

and the parameters α, β, and γ are defined as

α =
1√

12(2 +
√

3)
;

β =
2 + 2

√
3

2
√

12(2 +
√

3)
;

γ = − 4 + 2
√

3

2
√

12(2 +
√

3)
. (13)

If we now perform a partial trace of sites 1 and 2 on each
rung we obtain a reduced density matrix of the form

ρ0
red =

∏
i

((4(α2 − 1

4
)S3i · S4i +

I

4
)), (14)
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which in turn implies an entanglement Hamiltonian given
by

H0
entanglement = −

∑
i

log
(
4(α2 − 1

4
)S3i · S4i +

I

4

)
. (15)

This implies the ground state of H0
entanglement is a product

of rung singlets with an excitation gap to a rung triplet
of Eent.gap = − log(α2/(1− 3α2)).

We now consider the effects of the presence of a weak
Jleg. In first order perturbation theory, the ground state
product of singlets is mixed in with various excited rung
triplets (three in total). The correction to the ground
state energy takes the form

δ|GS〉 =
Jleg

Jrung

∑
µ=1,2,3

cµ
∑
i

|s〉1 ⊗ · · · ⊗ |s〉i−1

⊗(|t+µ 〉i|t−µ 〉i+1 + |t−µ 〉i|t+µ 〉i+1 + |t0µ〉i|t0µ〉i+1)

⊗|s〉i+2 ⊗ · · · ⊗ |s〉L, (16)

where the coefficients cµ and the states |t+,−,01,2,3 〉 are de-
fined in the Appendix. This correction to the ground
state energy then leads to a correction to the reduced
density matrix of the form:

δρ =
Jleg

Jrung

N−1∑
i=1

[ i−1∏
j=1

(4(α2 − 1

4
)S3j · S4j +

Ij
4

)δρi,i+1

×
N∏

j=i+2

(4(α2 − 1

4
)S3j · S4j +

Ij
4

)

]
;

δρi,i+1 =

(
J33S3i · S3i+1

+J34S3i · S4i+1 + J43S4i · S3i+1 + J44S4i · S4i+1

+J3344S3i · S3i+1S4i · S4i+1

+J3443S3i · S4i+1S4i · S3i+1

)
, (17)

where the J ’s are given in the Appendix. We see that
δρ contains all possible couplings consistent with SU(2)
invariance between nearest neighbor rungs including a
number of four spin terms. Unlike the two-leg ladder39,41,
we will thus not obtain a particularly simple form for
the entanglement Hamiltonian. The lowest entanglement
excitation is a k = π triplet,

|ψt+,−,0〉(k = π) =
∑
i

(−1)i|ψt+,−,0〉i

where

|ψt+,−,0〉i ≡
i−1∏
j=1

|s〉j ⊗ |t+,−,0〉i ⊗
N∏

j=i+1

|s〉j .
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FIG. 15: Entanglement spectral gap for a bipartite splitting
of a 4× L ladder into two 2× L ladders for the ground state
of the ladder Heisenberg Hamiltonian with open (top) and
periodic (bottom) boundary conditions on the rungs. The
analytic computations are plotted with open (black) circles.

Here |s〉 and |t+,−,0〉 are states on a two-site rung. The
entanglement gap is then

Eent.gap = − log

(
α2

1− 3α2
−

Jleg

Jrung

L− 1

2L

J33 + J44 − J34 − J43 + J3344

(1− 3α2)2

)
. (18)

We note that this expression is only valid at relatively
small Jleg, see Fig. 15 (top) for Jleg = 0.001, 0.01.

We also consider the entanglement Hamiltonian for the
four leg ladder with periodic boundary conditions. At
Jleg = 0 we find

H0,PBC
entanglement = −

∑
i

log

(
− 2

3
S3i · S4i +

I

4

)
. (19)

This leads to an entanglement gap (to a triplet) of
Eent.gap = log 9 for Jleg = 0.

And again we will compute the correction at first or-
der in Jleg to the entanglement gap. For periodic bound-
ary conditions the correction to the ground state energy
again involves mixing with the three possible rung triplet
excitations (as in Eqn. (16). Correspondingly the cor-
rection to the reduced density matrix has the same form
as in Eqn. (17). We give some of the details of this com-
putation in the Appendix. The entanglement excitation
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L

10−1

100
∆

ξ

Jrung = 1, Jleg = 0.1

Jrung = 1, Jleg = 0.5

Jrung = 1, Jleg = 1.0

FIG. 16: Entanglement spectral gap for a bipartite splitting
of a 4 × L ladder into a chain of length L and 3 × L ladders
for the ground state of the ladder Heisenberg Hamiltonian
with open (solid lines) and periodic (dashed lines) boundary
conditions on the rungs.

with minimal gap for this case is also a k = π triplet. Its
gap is equal to

EPBC
ent.gap = − log

(
1

9
− Jleg

Jrung

L− 1

L

1

2

(4

3

)2
×(JPBC

33 + JPBC
44 − JPBC

34 − JPBC
43 + JPBC

3344 )

)
. (20)

Again this is only valid for small Jleg, see Fig. 15 (bot-
tom).

As our final result, we consider splitting the 4×L lad-
der into a chain and a 3 × L ladder. In this case, both
of the subsystems are gapless and we expect a gapless
entanglement spectrum. The numerical results shown in
Fig. 16 confirm this hypothesis. Unlike the case of three-
leg ladders, the boundary conditions on the four-leg lad-
der do not play a significant role here.

From the computational point of view, the simulation
of the excited states for the entanglement Hamiltonian of
the four leg ladders requires at most an hour. However,
obtaining the reduced density matrix as a manageable
MPO requires substantial memory resources (several gi-
gabytes) as the matrix product operator obtained by sim-
ply contracting the tensor network for the ground state
(Fig. 7) is very large (in a redundant way) and must be
aggressively truncated, requiring up to an hour of pro-
cessor time for each case.

The spectral gap (but not other levels in the entangle-
ment spectrum) could alternatively have been simulated
by the simulating separately the “ground state” of the
matrix product operator ρS in the Sz = 0 and in the
Sz = 1 sector.

IV. CONCLUSIONS

We have described a method to simulate quantum
many-body systems using tree tensor networks where the
global symmetries are employed to reduce the minimiza-
tion costs of the tensors to a minimum by optimizing each
charge configuration in the tensor individually. Further-
more, we have presented a method to calculate the en-
tanglement spectrum for large many-body systems which
can be described in terms of tensor networks by by con-
structing the reduced density operator as a matrix prod-
uct operator and calculating eigenvectors in various sym-
metry sectors. The method can be used on top of our tree
tensor network method to simulate the ground states but
also on top of the standard DMRG algorithm.

We have used the methods described in this manuscript
to simulate the entanglement spectra of 2 × L, 3 × L
and 4 × L ladders with either open or periodic bound-
ary conditions on the rung. From numerical results we
have found that the nature of the entanglement spec-
trum depends not only on the subsystem in the bipartite
splitting but also on the number of boundaries connect-
ing the systems, as a result of the boundary conditions
in the Hamiltonian operator. Unlike the case of two-leg
ladders, in the limit of weak coupling along the legs of the
ladder, we in general did not find a simple relationship
between the entanglement Hamiltonian and the minimal
Heisenberg Hamiltonian of the untraced subsystem.
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Appendix A: Computational Details for the O(Jleg)
Correction to the Bipartite Reduced Density

Matrix, ρ, for the Four Leg Ladder

1. Open Boundary Conditions

The excited rung triplets of the four site rung have the
form:

|t−1 〉 = −| ↓↓↓↑〉+ (1 +
√

2)| ↓↓↑↓〉 − (1 +
√

2)| ↓↑↓↓〉+ | ↑↓↓↓〉;
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|t+1 〉 = −| ↑↑↑↓〉+ (1 +
√

2)| ↑↑↓↑〉 − (1 +
√

2)| ↑↓↑↑〉+ | ↓↑↑↑〉;

|t01〉 = −| ↑↑↓↓〉+ (1 +
√

2)| ↑↓↑↓〉 − (1 +
√

2)| ↓↑↓↑〉+ | ↓↓↑↑〉;

|t−2 〉 = | ↓↓↓↑〉 − | ↓↓↑↓〉 − | ↓↑↓↓〉+ | ↑↓↓↓〉;

|t+2 〉 = | ↑↑↑↓〉 − | ↑↑↓↑〉 − | ↑↓↑↑〉+ | ↓↑↑↑〉;

|t02〉 = −| ↓↑↑↓〉+ | ↑↓↓↑〉;

|t−3 〉 = −| ↓↑↑↓〉+ | ↑↓↓↑〉+ (−1 +
√

2)| ↓↑↓↓〉+ | ↑↓↓↓〉;

|t+3 〉 = −| ↑↑↑↓〉+ (1−
√

2)| ↑↑↓↑〉+ (−1 +
√

2)| ↑↓↑↑〉+ | ↓↑↑↑〉;

|t03〉 = −| ↑↑↓↓〉+ (1−
√

2)| ↑↓↑↓〉+ (−1 +
√

2)| ↓↑↓↑〉+ | ↓↓↑↑〉. (A1)

Their energies are respectively Et1 = 1
4 (−1 − 2

√
2), Et2 = −1/4, and Et3 = 1

4 (−1 + 2
√

2). The coefficients, cµ, that
determine how these states contribute to δ|GS〉 (see Eqn. 14) are as follows:

c1 =
11 + 7

√
2 + 6

√
3 + 4

√
6

6(2 +
√

2)(2 +
√

3)

1
1
2 (−2− 2

√
3 + 2

√
2)

;

c2 =
−11 + 7

√
2− 6

√
3 + 4

√
6

6(−2 +
√

2)(2 +
√

3)

1
1
2 (−2− 2

√
3)

;

c3 =
1

3

1
1
2 (−2− 2

√
3− 2

√
2)
. (A2)

Finally the couplings defining δρ in Eqn. (17) at O(Jleg) are given by:

J33 = c1
9 + 5

√
2 + 5

√
3 + 3

√
6

12(2 +
√

2)(2 +
√

3)
+
c2
6

+ c3
−9 + 5

√
2− 5

√
3 + 3

√
6

12(−2 +
√

2)(2 +
√

3)
;

J44 = c1
13 + 9

√
2 + 7

√
3 + 5

√
6

12(2 +
√

2)(2 +
√

3)
+
c2
6

+ c3
−13 + 9

√
2− 7

√
3 + 5

√
6

12(−2 +
√

2)(2 +
√

3)
;

J34 = J43 = −c1
10 + 7

√
2 + 6

√
3 + 4

√
6

12(2 +
√

2)(2 +
√

3)
− c2

6
+ c3

10− 7
√

2 + 6
√

3− 4
√

6

12(−2 +
√

2)(2 +
√

3)
;

J3344 = −J3443 = −c1
1

6
(2 +

√
2)− c2

2 +
√

3

3
+ c3

3− 2
√

2

3(−2 +
√

2)
. (A3)

2. Periodic Boundary Conditions

We now present a similar set of data for the case of
periodic boundary conditions. The excited triplets on

the four site rung are as follows:

|t−1 〉 = −| ↓↓↓↑〉+ | ↓↓↑↓〉 − | ↓↑↓↓〉+ | ↑↓↓↓〉;

|t+1 〉 = −| ↑↑↑↓〉+ | ↑↑↓↑〉 − | ↑↓↑↑〉+ | ↓↑↑↑〉;

|t01〉 = −| ↑↓↑↓〉+ | ↓↑↓↑〉;

|t−2 〉 = −| ↓↓↓↑〉 − | ↓↓↑↓〉+ | ↓↑↓↓〉+ | ↑↓↓↓〉;

|t+2 〉 = −| ↑↑↑↓〉 − | ↑↑↓↑〉+ | ↑↓↑↑〉+ | ↓↑↑↑〉;
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|t02〉 = −| ↑↑↓↓〉+ | ↓↓↑↑〉;

|t−3 〉 = | ↓↓↓↑〉 − | ↓↓↑↓〉 − | ↓↑↓↓〉+ | ↑↓↓↓〉;

|t+3 〉 = | ↑↑↑↓〉 − | ↑↑↓↑〉 − | ↑↓↑↑〉+ | ↓↑↑↑〉;

|t03〉 = −| ↓↑↑↓〉+ | ↑↓↓↑〉; (A4)

Their energies are respectively Et1 = −1, Et2 = 0, and Et3 = 0. The coefficients, cµ, that determine how these states
contribute to δ|GS〉 are equal to:

cPBC
1 = −1

3
;

cPBC
2 = − 1

24
;

cPBC
3 = − 1

24
. (A5)

Finally the couplings defining δρ in Eqn. (17) at O(Jleg) are given by

JPBC
33 = JPBC

44 =
c1
3

+
c2
12

+
c3
12

;

JPBC
34 = JPBC

43 = −c1
3

+
c2
12
− c3

12
;

JPBC
3344 = −JPBC

3443 = −c1
3
− 4c3

3
. (A6)
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48 U. Schöllwock, Rev. Mod. Phys. 77, 259 (2005).
49 K. A. Hallberg, Adv. Phys. 55, 477 (2006).
50 E. M. Stoudenmire and S. R. White, Annu. Rev. Cond.

Mat. Phys. 3, 111 (2012).
51 S. Moukouri, Phys. Rev. B 70, 014403 (2004).
52 T. Barnes, E. Dagottto, J. Riera, and E. S. Swanson, Phys.

Rev. B 47, 3196 (1993).
53 S. Nishimoto and M. Arikawa, Phys. Rev. B 78, 054421

(2008).
54 T. Sakai, M. Sato, K. Okunishi, Y. Otsuka, K. Okamoto,

and C. Itoi, Phys. Rev. B 78, 184415 (2008).

http://arxiv.org/abs/1208.4033

	I Introduction
	II Method
	A Ground state simulation
	1 DMRG (two-site) optimization
	2 Variational (one-site) optimization

	B Entanglement spectrum

	III Results
	A Ground state of the ladders
	B Entanglement spectrum
	C Entanglement spectral gap

	IV Conclusions
	 Acknowledgments
	A Computational Details for the O(Jleg) Correction to the Bipartite Reduced Density Matrix, , for the Four Leg Ladder
	1 Open Boundary Conditions
	2 Periodic Boundary Conditions

	 References

