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Approaching the Kosterlitz-Thouless transition for the classical XY model with tensor networks
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We apply variational tensor-network methods for simulating the Kosterlitz-Thouless phase transition in the
classical two-dimensional XY model. In particular, using uniform matrix product states (MPS) with non-Abelian
O(2) symmetry, we compute the universal drop in the spin stiffness at the critical point. In the critical low-
temperature regime, we focus on the MPS entanglement spectrum to characterize the Luttinger-liquid phase. In
the high-temperature phase, we confirm the exponential divergence of the correlation length and estimate the
critical temperature with high precision. Our MPS approach can be used to study generic two-dimensional phase
transitions with continuous symmetries.
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I. INTRODUCTION

In contemporary theoretical physics the interplay between
symmetry and dimensionality is widely appreciated for giving
rise to fascinating physical phenomena. Historically, one of
the crucial results in establishing this viewpoint was the phase
transition in the two-dimensional classical XY model. This
model is introduced by placing continuous angles {θi} on
a square lattice and characterizing their interactions by the
Hamiltonian

H = −
∑
〈i j〉

cos(θi − θ j ) − h
∑

i

cos(θi ),

where 〈i j〉 labels all nearest-neighbor pairs and we introduce
an external magnetic field h for further reference.

The first ingredient for understanding the phase diagram
of the XY model (without a magnetic field) is the Mermin-
Wagner theorem [1,2]: No conventional long-range order can
exist at any finite temperature in this model, because of
the proliferation of spin-wave excitations in two dimensions.
Still, one expects a phase transition in this system. At low
temperatures, the system can be described by a simple con-
tinuum field theory with algebraically decaying correlation
functions. A high-temperature expansion, however, suggests
an exponential decay of correlations in this system at suffi-
ciently high temperature. As Berezinskii [3] and Kosterlitz
and Thouless [4] (BKT) have showed, the phase transition
between the low- and high-temperature regime is driven by the
unbinding of vortices and is therefore of a topological nature.
The transition is captured by a renormalization-group (RG)
analysis [5,6], where in the critical phase the long-wavelength
properties are described by a free bosonic field theory with
continuously varying critical exponents, until vortices become
relevant and drive the system into a gapped phase at a critical
temperature Tc. The quantity that characterizes the transition
(in the absence of a local order parameter) is the spin stiffness
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ρ(T ), which discontinuously drops [7] from a finite value
in the critical phase to zero in the gapped phase; from the
renormalization analysis, the size of the drop is known to be
given by

lim
T →T −

c

ρ(T ) = 2Tc

π
, (1)

but the value of Tc is not known exactly. When approaching
the critical point from the gapped side, the BKT transition is
characterized by an exponential divergence of the correlation
length [5,8],

ξ (T ) ∝ exp

(
b√

T − Tc

)
, T → T +

c , (2)

with b a nonuniversal parameter.
The BKT phase transition in the XY model has been a

notoriously hard case for numerical simulations, because of
the exponentially diverging correlation length and the ensuing
logarithmic finite-size corrections around the phase transi-
tion. Nonetheless, shortly after the theoretical work, Monte
Carlo simulations [9,10] provided considerable evidence for
the correctness of the theory and rough estimates for the
transition temperature. In recent years, these estimates were
significantly improved [11,12], obtaining a value around Tc ≈
0.8929, in agreement with high-temperature expansions [13].
Still, these results depend heavily on assumptions about the
logarithmic finite-size corrections and an improved extrap-
olation [14] places the transition temperature at a higher
value of Tc ≈ 0.8935. Crucially, the best estimates use the
universal value for the spin stiffness at the phase transition
for pinpointing the critical point.

Tensor networks [15,16] provide an original framework
for capturing the symmetry-dimensionality interplay, both
from the theoretical and the numerical side. Although orig-
inally devised for capturing the entanglement in strongly
correlated quantum lattice systems, tensor networks are in-
creasingly being applied to problems in statistical mechanics.
Since the framework is entirely different from traditional
approaches such as Monte Carlo sampling, it can shed a new,
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entanglement-based, light on statistical-mechanics problems.
Indeed, tensor networks encode all physical properties of a
given system into local tensors, and they allow one to under-
stand the relation between physical symmetries of the local
degrees of freedom and the global properties of the system
in a transparent way. One particular example is the clas-
sification of symmetry-protected topological phases in one-
dimensional quantum systems, which is brought back to the
symmetry properties of the local tensors that make up a
matrix product state (MPS) [17,18]. This was extended to two
dimensions, where the topological order of a wave function
can be related to the symmetry properties of the local tensor in
a projected entangled-pair state (PEPS) [19]. On the numerical
side, physical symmetries can be explicitly incorporated in
tensor-network algorithms and lead to an improved efficiency
and performance [20–23].

The encoding of symmetries in tensor networks is per-
formed most elegantly when working directly in the thermo-
dynamic limit, because one can purely focus on the sym-
metry properties of the bulk tensors without bothering about
what happens at the boundaries of the system. Yet, applying
uniform tensor networks with an explicit encoding of the
physical symmetries seems to break down when considering
critical phases. For example, in a critical phase a uniform MPS
[24] typically favors an artificial breaking of a continuous
symmetry, where the associated order parameter decreases
very slowly as the bond dimension is increased. The apparent
reason for this artificial symmetry breaking is that MPS have a
built-in limitation for the amount of entanglement in the state,
which makes it energetically favorable to break a continuous
symmetry. This seems to imply that uniform tensor networks
fail to capture the essential properties of critical phases with a
continuous symmetry.

In this paper, we explore this question in more detail by
investigating the precise sense in which uniform MPS capture
critical phases with a continuous symmetry. As explained, the
XY model serves as the paradigmatic example of a system
where the absence of symmetry breaking leads to a critical
phase, and therefore we take the XY model as our test case.
An earlier tensor-network approach for the XY model [25]
is based on the (nonvariational) tensor-renormalization group
method, obtaining an estimate for the critical temperature
from the susceptibility. Here, we use variational uniform MPS
methods for transfer matrices [26–28] as a means for charac-
terizing the BKT phase transition. In the first two sections we
explain the duality transformation [6] that allows us to define
a row-to-row transfer matrix, approximate its fixed point as a
uniform MPS, and to compute local observables. In the next
section, we focus on the spin stiffness as the characteristic
quantity in the BKT phase transition. Afterwards, we use the
Luttinger-liquid formalism to characterize the critical phase.
Finally, in the last section, we focus on the gapped phase and
locate the critical temperature with high precision.

II. MPS FOR THE XY TRANSFER MATRIX

A. Partition function

We start by writing down the partition function for the XY
model as a tensor network. The partition function at a given

inverse temperature β = 1/T is given by

Z =
∏

i

∫
dθi

2π

∏
〈i j〉

eβ cos(θi−θ j )
∏

i

eβh cos(θi ).

In order to arrive at a tensor-network representation, we intro-
duce a duality transformation [6] that maps the above partition
function to a representation in terms of bosonic degrees of
freedom on the links. Such a map is obtained by introducing
the following decomposition on every link in the lattice,

ex cos(θi−θ j ) = lim
N→∞

N∑
n=−N

In(x)ein(θi−θ j ),

where In(x) are the modified Bessel functions of the first kind.
Then, by integrating over all the θ ’s, the partition function is
transformed into

Z = lim
N→∞

∏
l∈L

(
N∑

nl =−N

Inl (β )

) ∏
s

F ns,3,ns,4
ns,1,ns,2

,

where F is a four-index tensor,

F n3,n4
n1,n2

=
∫

dθ

2π
eβh cos θeiθ (n1+n2−n3−n4 ).

The first product runs over all the links in the lattice, and s
labels all the sites in the lattice. We can now represent this
partition function as a network of tensors,

Z =

O O OO

O O OO

O O OO

O O OO

,

where every tensor O is given by

O

n1

n2

n3

n4 =

(
4∏

i=1

Ini(β)

)1/2

Fn3,n4
n1,n2

and the virtual legs ni have infinite dimension. In practice,
however, it will be possible to truncate these indices without
loss of accuracy; indeed, in the above decomposition the
coefficients fall below machine precision for N < 15 for
temperatures not too small. We have introduced arrows on the
legs to indicate the signs in which the ni’s appear in the F
tensor above.

The fundamental object in this representation of the parti-
tion function is the row-to-row transfer matrix T (β, h),

T (β, h) = O O OO ,

which is an operator acting on an infinite chain of bosonic
degrees of freedom. The value for the partition function. and
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therefore the free energy of the model, is determined by
the leading eigenvalue � of the transfer matrix. Indeed, this
leading eigenvalue is expected to scale as the number of sites
per row, i.e., � ∼ λNx , such that the free energy per site is

f (β, h) = lim
NxNy→∞

(
− 1

β

1

NxNy
log Z

)

= lim
NxNy→∞

(
− 1

β

1

NxNy
log[T (β, h)Ny ]

)

= − 1

β
log λ(β, h).

The eigenvector corresponding to the leading eigenvalue,
referred to as the fixed point of the transfer matrix,

T (β, h) |	β,h〉 = � |	β,h〉 ,

will be of crucial importance in all computations. In a number
of applications, it has been shown that fixed points of transfer
matrices can be approximated accurately using the variational
class of matrix product states (MPS) [26]. For translation-
invariant transfer matrices, we can describe the fixed point as
a uniform MPS described by a single tensor A,

|Ψ(A)〉 = A A A A .

The tensor A has virtual legs of dimension D, which we call
the MPS bond dimension, and by repeating the tensor on
every site and contracting over the virtual legs, we obtain a
translation-invariant state. For simplicity, we take the virtual
legs of the MPS to have no arrows. In terms of the fixed-point
MPS, the fixed-point eigenvalue equation is rephrased as

O O OO

A A A A

∝

A A A A .

We aim at finding a tensor for which this eigenvalue problem
is obeyed in an optimal way. Since the transfer matrix is
Hermitian, we can use the variational principle for establish-
ing an optimization problem for the tensor A,

max
A

〈	(Ā)| T (β, h) |	(A)〉
〈	(Ā)|	(A)〉 .

This optimization problem can be efficiently solved using
tangent-space methods for uniform MPS [26,28]; in partic-
ular, we use the VUMPS algorithm [27] for finding the optimal
MPS tensor. The eigenvalue, and therefore the free energy,
is then obtained as the contraction of an infinite channel of
O tensors sandwiched between the fixed-point MPS and its

FIG. 1. Free energy per site of the XY model (h = 0) as obtained
from variational MPS simulations with bond dimension D = 30 and
without using any symmetries on the virtual legs.

conjugate,

Λ = 〈Ψ(Ā)|T (β, h) |Ψ(A)〉

= O O OO

A A A A

Ā Ā Ā Ā

,

or we find λ as the leading eigenvalue (spectral radius ρ) of
the channel operator,

λ = ρ

⎛
⎜⎜⎝ O

A

Ā

⎞
⎟⎟⎠ .

Here, we have assumed that the MPS itself is normalized as

ρ

(
A

Ā

)
= 1.

In Fig. 1 we have plotted the result for the free energy per
site as obtained by a variational MPS simulation of the XY
model in a certain temperature range and without a magnetic
field, where we use MPS with a bond dimension of D =
30. We observe that the free energy shows no signs of a
phase transition as it is perfectly smooth everywhere, which
is expected for a BKT phase transition. Note that, whereas
the free energy cannot be directly computed using Monte
Carlo sampling, it appears as the fundamental quantity in the
variational MPS setup.

B. Symmetries in the MPS representation

The case without a magnetic field (h = 0) is of particular
importance, because the model is invariant under a global
transformation θi → θi + α. This U(1) invariance is reflected
in the tensor-network representation as a symmetry of the
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transfer matrix. Indeed, if h = 0, we have

F n3,n4
n1,n2

∣∣
h=0 =

∫
dθ

2π
eiθ (n1+n2−n3−n4 ) = δ

n3+n4
n1+n2

,

such that the tensor O has conservation of U(1) charges. We
can introduce the operator Q,

Q

n1

n2

= δn2
n1

n1, (3)

which counts the charge on a given leg in the tensor network;
this operator is the generator of the U(1) symmetry of the
transfer matrix. Indeed, from the conservation property for
the tensor O the transfer matrix clearly commutes with the
symmetry operation

U (θ ) = eiθ
∑

j Q j , [T (β ),U (θ )] = 0.

For future reference, we introduce the tensor u(θ ),

uθ

n1

n2

= δn2
n1

exp (iθn1) , (4)

such that the symmetry operation is U (θ ) = ⊗
i ui(θ ).

The Mermin-Wagner theorem now dictates that this U(1)
symmetry cannot be broken at any finite temperature. On
the level of the transfer matrix this implies that the leading
eigenvector (fixed point) necessarily is invariant under the
U(1) transformation. For the MPS approximation of the fixed
point, this implies that

A A A A

uθ uθ uθ uθ

= A A A A

for any θ . The fundamental theorem of MPS now dictates that
we can associate this symmetry of the MPS to a symmetry
property of the local tensor A [29]. Specifically, we have
that the virtual legs of the MPS tensor transform themselves
according to representations of the U(1) symmetry,

A

uθ
= A vθv

†
θ . (5)

In general, these representations on the virtual level can be
projective. Imposing that the MPS is invariant under group
transformations implies that the tensor A has a certain block
structure, where each block can be labeled by a choice of
representations on each leg of the tensor.

Although the characteristic physics of the XY model is
determined by the U(1) symmetry, we can also take into
account the charge-conjugation symmetry C that flips the sign
of the charges in the transfer matrix. The total symmetry group

TABLE I. The leading eigenvalue (per site) of the XY transfer
matrix in the critical phase (T = 0.8) as obtained by imposing an
MPS approximation for the fixed point, where we have imposed
different symmetry properties on the virtual legs of the MPS.

D λ

No symmetries 19 2.5869206
Integer charges 45 2.5869172
Half-integer charges 46 2.5869184

that we consider is the (non-Abelian) group U(1) � C, which
corresponds to the full O(2) symmetry of the XY model.
There are two types of irreducible representations (irreps) of
this O(2) symmetry. First, there are the irreps correspond-
ing to integer charges n = 0, 1, 2, . . . ; for n = 0 there are
two one-dimensional irreps, whereas for n > 0 they are all
two dimensional. Second, there are half-integer charges n =
1
2 , 3

2 , . . . , corresponding to projective representations; these
irreps are all two dimensional.

Since the transfer matrix only contains legs with integer
representations, the “physical legs” of the MPS all transform
according to integer representations as well. This, however,
still allows for the freedom on the virtual level of the MPS
to impose either integer representations or half-integer repre-
sentations, giving rise to two different classes of O(2) invari-
ant MPS. In gapped phases, the occurrence of either set of
representations is known to characterize a trivial (integer) or
symmetry-protected topological (half-integer) phase [17,18].
In order to illustrate these different classes of MPS and to see
which one is realized for the fixed point of the XY transfer
matrix, we have performed simulations (i) without imposing
symmetries on the legs, (ii) with integer irreps on the legs,
and (iii) with half-integer irreps on the legs. In Table I we
list the corresponding values for the transfer-matrix leading
eigenvalue λ at a point in the critical phase.

A first observation is that we find a higher value for λ

when no symmetries are imposed at a significantly lower
bond dimension. This shows that a variational MPS favors
the breaking of the U(1) symmetry. As we have discussed
in the Introduction, this artificial symmetry breaking is also
observed in other critical systems with a U(1) symmetry
[24]. The explanation for this effect can be sought in the
fact that MPS necessarily induces a finite correlation length.
Indeed, simulating a critical system with MPS with a finite
bond dimension can be thought of as slightly perturbing the
system such that a gap is opened and a finite correlation
length is introduced. From the perspective of an effective
field theory describing the critical system, the MPS adds a
relevant perturbation that opens up a gap in this field theory.
In the U(1) phase, however, only symmetry-breaking terms
are relevant, such that we expect that the MPS approximation
induces an artificial symmetry breaking. This observation is
confirmed when we compute the U(1) order parameter in the
next section.

Second, upon imposing the U(1) or O(2) symmetry explic-
itly, we observe that the eigenvalue reaches a similar value
at a comparable bond dimension in the two (normal and
projective, respectively) sectors. If we again interpret the MPS
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approximation as introducing a gap, this result suggests that
the critical U(1) phase can be perturbed into both a symmetry-
protected topological (SPT) phase and a regular phase. As we
will see in Sec. V, in the gapped phase it can be determined
without ambiguity what irreps should be chosen on the MPS
virtual legs.

C. Computing local observables

Local observables such as the internal energy and the mag-
netization can be represented in the tensor-network language
as follows. A generic one-angle observable at site j,

〈h(θ j )〉 = 1

Z

∏
i

(∫
dθi

2π

)
e−βE ({θi})h(θ j ),

can, under the duality transform that we introduced above, be
represented diagrammatically as

〈h(θi)〉 =
1
Z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O OO

O O

O OO

M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

n1

n2

n3

n4 M =

(
4∏

i=1

Ini(β)

)1/2

d
e

e

Using the MPS representation of the transfer-matrix fixed
point, we can simplify this to

〈h(θ)〉 =

⎛
⎜⎜⎜⎜⎝ O

A A

Ā Ā

M O

A

Ā

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝ O

A A

Ā Ā

O

A

Ā

O

⎞
⎟⎟⎟⎟⎠

.

The contractions of these infinite channels are evaluated by
finding the leading eigenvectors of the channel operators.

Similarly, a generic nearest-neighbor two-angle observable
at sites j and k is given by

〈h(θj , θk)〉 =
1
Z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O O OO

O O

O O OO

E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with

n2

n4

n1

n5

n6 n3E =

(
6∏

i=1

Ini
(β)

)1/2

×
∫

dθj

2π

∫
dθk

2π
h(θj , θk)eβh(cos θj+cos θk)

×

×

∑
m

(
Im(β)eiθj(n1+m−n5−n6)

eiθk(n2+n3−n4−m)
)

.

Using the MPS fixed points that we have optimized earlier for
computing the free energy—i.e., without using symmetries on
the virtual level—we now compute the internal energy e, the
entropy s, and the order parameter o,

e = −2 〈cos(θi − θ j )〉 ,

s = β(e − f ),

o = | 〈eiθi〉 |,

as a function of temperature, and plot the results in Fig. 2.
Again, the energy and entropy show no sign of the phase
transition. Also, we observe that the value for the energy has
already converged up to an error of ε = 10−6 at a bond dimen-
sion of D = 30; since the entropy is computed from the free
energy and the internal energy, it has the same accuracy. As
anticipated in the previous section, the order parameter shows
a very large value in the critical region, which decreases very
slowly as the bond dimension increases. This shows that the
MPS breaks the continuous U(1) symmetry significantly in
the critical phase, whereas in the gapped phase the symmetry
is restored. The fact that the order parameter decays very
slowly with increasing bond dimension shows that this is an
essential property of MPS approximations for U(1) phases.
On the other hand, from the convergence of the free and
internal energy, we see that this does not prohibit an accurate
evaluation of the system’s physical properties. Note that the
order parameter is identically zero if we would impose the
U(1) or O(2) symmetry on the virtual level of the MPS, but,
as we have seen in Table I, at a large variational cost in the
free energy.
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(a)

(b)

(c)

FIG. 2. Observables from MPS simulations with bond dimension
D = 30 (no virtual symmetries). In (a) we plot the order parameter,
showing significant symmetry breaking in the critical region; the
inset shows that this value (for T = 0.7) of the order parameter
decreases very slowly with the bond dimension. In (b) we plot the
internal energy, showing no sign of a phase transition; here, the inset
shows good convergence even for small bond dimensions (T = 0.7).
In (c) we plot the entropy per site, which is easily evaluated from
the free and internal energy; we have renormalized the entropy
as s(β ) → s(β ) − s(∞), with s(∞) = log ( 1

2π
), such that the zero-

temperature limit yields a zero entropy and the entropy is positive
everywhere.

III. THE SPIN STIFFNESS

The phase transition in the XY model can, in the absence of
a local order parameter, be characterized by the so-called spin
stiffness. This quantity is defined as the response to a twist
field �v, which rotates the angles θi as

θi → θi + �v · �ni,

where �ni is the position vector for the lattice site i. If we
take the twist field along the y axis, this modifies the classical
Hamiltonian (without magnetic field) to

Hv = −
∑
〈i j〉x

cos(θi − θ j ) −
∑
〈i j〉y

cos(θi − θ j + v).

On the level of the partition function, this introduces an extra
phase factor on the vertical links,

Zv =
∏
l∈Ly

(
N∑

nl =−N

Inl (β )einl v

)

×
∏
l∈Lx

(
N∑

nl =−N

Inl (β )

) ∏
s

F ns,3,ns,4
ns,1,ns,2

.

Incorporating these extra phase factors, we can represent the
partition function as

Zv =

O O O

uv uv uv

uv uv uv

O O O

uv uv uv

O O O

,

where the tensor uv was defined in Eq. (4). We find for the
transfer matrix after the twist

Tv(β) =
O O

uv uv

O

uv

O

uv

= T (β)U(v) = U(v)T (β),

because U (v) commutes with the transfer matrix. This implies
that all eigenvectors of the transfer matrix remain unchanged
after a twist and the eigenvalues are multiplied by a phase.
In particular, the fixed point remains unchanged and, as the
fixed point lives in the charge-zero sector, so does the leading
eigenvalue. This, in turn, implies that the free-energy density
is a constant when applying a twist

f (v) = f (0),
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and that the spin stiffness, defined as

ρ = ∂2 f

∂v2

∣∣∣∣
v=0

,

is identically zero for all temperatures.
This is a surprising result, because ρ is supposed to jump

discontinuously at the transition. The reason for this discrep-
ancy lies in the fact that we work directly in the thermody-
namic limit. Indeed, the spin stiffness is typically defined in
a system that is finite and has periodic boundary conditions
in the direction of the twist. In that setting, applying the twist
field is equivalent to imposing twisted boundary conditions—
this can be observed from the above representation of the
partition function, where the operator U (v) can be pulled
through the lattice—and is, therefore, a finite-size property.
It is only after it has been defined on this periodic system that
the infinite-size limit can be taken. The above definition of
the spin stiffness in terms of the infinite-size transfer matrix,
on the other hand, assumes open boundary conditions. If the
transfer matrix has no gap in the thermodynamic limit, both
definitions are not equivalent.

We can work around this by computing the spin stiffness
as a two-point function. First we note that we can rewrite the
expression for the spin stiffness as

ρ = − lim
N→∞

1

NβZ (0)

∂2Zv

∂v2

∣∣∣∣
v=0

,

where the twisted partition function can be written as

Zv =

Ov Ov Ov Ov

OvOvOvOv

Ov

Ov Ov

Ov Ov

Ov Ov

Ov

,

with the twisted tensor

Ov

n1

n2

n3

n4 =

(
4∏

i=1

Ini(β)

)1/2

ein3vFn3,n4
n1,n2

.

In the tensor-network representation of Zv we can easily
differentiate with respect to v. Indeed, the first derivative is
given by

1
N

∂Zv

∂v

∣∣∣∣
v=0

=

O OO

O OR

O OO

,

with the tensor R = ∂Ov

∂v
|
v=0

, or

R

n1

n2

n3

n4 = in3

(
4∏

i=1

Ini(β)

)1/2

Fn3,n4
n1,n2

.

For the second derivative we have to differentiate two different
tensors, and twice the same tensor. The result is given by (the
site i is arbitrary)

+
∑
j �=i

O OO

O RO

O OR

j

i

,
1
N

∂2Zv

∂v2

∣∣∣∣
v=0

=

O OO

O OS

O OO

i

(6)

where we have introduced the tensor S = ∂2Ov

∂v2 |
v=0

, or

This reduces the spin stiffness to a summation of two-point
functions, and therefore has the form of a structure factor. We
should note that bringing the factor in3 down in the tensor is
equivalent to introducing a factor sin(θi − θ j ) in the partition
function because of the identities

∞∑
n=−∞

(in)In(x)einθ = −ex cos θx sin θ,

∞∑
n=−∞

(in)2In(x)einθ = ex cos θ (x2 sin2 θ − x cos θ ).

The spin stiffness can therefore be brought into the form

ρ = − 1

N

(
β

〈
S2

y

〉 − 〈cos(θi − θ j )〉
)
,

with

Sy =
∑
〈i j〉y

sin(θi − θ j ).

In this form, it can be evaluated in Monte Carlo simulations on
a system with periodic boundary conditions without explicitly
applying a twist [14,30].

Again, the evaluation of this two-point function is identi-
cally zero on an infinite system with open boundary conditions
in the presence of an unbroken U(1) symmetry. Indeed, if
we represent the infinite upper plane of the above expres-
sion by the fixed point of the transfer matrix, we observe
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FIG. 3. The spin stiffness as a function of temperature for a set
of different values of the magnetic field: h = 10−3 (green), h = 10−4

(purple), h = 10−5 (yellow), h = 10−6 (red), h = 10−7 (blue). The
solid lines were computed with a bond dimension D = 150, and the
dashed lines are D = 90. We have also plotted the straight line 2T

π
,

which is known to intersect the curve for the critical temperature
[Eq. (1)]; for h = 10−7 and D = 150 we find an intersection at T =
0.899.

that

∑
j

O R OO

A A A A

j

= i
∑

j

A A A A

O O OO

Q
j

,

which vanishes because the fixed point is U(1) symmetric.
This is, of course, consistent with the vanishing of the spin
stiffness as defined above.

When we do not impose U(1) symmetry on the MPS,
however, we find a finite value for the stiffness computed as
the above two-point function. In order to control the breaking
of the U(1) symmetry, therefore, we introduce a magnetic
field in the Hamiltonian, which breaks the U(1) symmetry
of the model and induces a gap. In the presence of this extra
field, the spin stiffness as defined by the above structure factor
[Eq. (6)] can be evaluated in an infinite system with open
boundary conditions. Similarly to taking the infinite-size limit
for a periodic system, we can then take the limit h → 0 to
obtain the result in the zero-field case. In Fig. 3 the results
for the spin stiffness [as defined from the structure factor in
Eq. (6)] as a function of temperature are given for a few values
of the magnetic field. These results were obtained by using
the channel-environment construction of Ref. [31] for eval-
uating structure factors in two-dimensional tensor networks.
The figure shows that the drop in the spin stiffness becomes
sharper as the magnetic field is decreased, but for very small
values of h the effects of a finite bond dimension become more
pronounced.

IV. LUTTINGER-LIQUID MAPPING

In the previous section we have computed the spin stiffness
by explicitly breaking the U(1) symmetry via an external
magnetic field. In this section, we show that we can use the
Luttinger-liquid formalism [32] to compute the same quantity
without an explicit breaking of the symmetry, directly in the
thermodynamic limit.

Early on, it was realized [6] that the proper effective field
theory for the partition function is given by the sine-Gordon
model [33], which is described by the one-dimensional quan-
tum Hamiltonian

HSG = 1

2π

∫
dx

(
uK (∇θ (x))2 + u

K
(∇φ(x))2

)

+g
∫

dx cos[2φ(x)].

The first line is the Hamiltonian of the Luttinger-liquid field
theory [32] describing the critical spin-wave excitations, and
the second line adds vortices to the picture. The microscopic
U(1) symmetry of the model is reflected in the sine-Gordon
field theory by the generator

− 1

π

∫
dx∇φ(x).

Since vortices are irrelevant in the critical phase, we expect
that under an RG transformation the vortices will drop from
the sine-Gordon Hamiltonian and the parameters u and K
will be renormalized. In other words, we expect that the
low-energy properties of the XY model will be described by
an effective Luttinger-liquid field theory,

HLL = 1

2π

∫
dx

(
ũK̃ (∇θ (x))2 + ũ

K̃
(∇φ(x))2

)
,

with the effective parameters ũ and K̃ determined by the
inverse temperature β. As soon as the effective Luttinger
parameter reaches K̃ = 2, however, vortices become relevant,
leading to a gapped phase where the φ field is locked in the
minima of the cosine term; the elementary excitations are
kinks and antikinks between the different ground states.

We can lift this notion of an effective field theory to the
level of a transfer matrix, where we formally introduce a
Luttinger-liquid transfer matrix,

TLL = exp (−HLL).

The idea is that this captures the low-energy behavior of the
XY transfer matrix, where the parameters ũ and K̃ depend
on the inverse temperature β. We confirm the low-energy
correspondence of the XY transfer matrix T (β ) with this
effective Luttinger-liquid form in three different ways.

The first correspondence can be found by computing the
low-lying spectrum of the XY transfer matrix, using the MPS
quasiparticle ansatz for the low-lying excited states [26,28].
We can label the excitations with a momentum p, yielding a
dispersion relation ω(p) as the logarithm of its eigenvalues,

ω(p) = − log

( 〈φ(p)| T (β ) |φ(p)〉
〈φ(p)|φ(p)〉

)
, (7)

and observe that we find a gapless spectrum with a linear
dispersion relation ω(p) = ũ|p|. Even stronger, we find the
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effective velocity ũ = 1 for all values of the temperature
within the critical phase [see Fig. 4(a)]. It is, of course,
expected that the effective field theory is isotropic, but this
serves as an excellent test of our transfer-matrix approach.

A second test consists of measuring the central charge,
which can be determined in an MPS simulation by comparing
the scaling of the bipartite entanglement entropy and the
correlation length of the fixed-point MPS as a function of
the bond dimension. It is known that, for a system that is de-
scribed by a conformal field theory, the scaling is determined
by the central charge c as [34,35]

SD ∝ c

6
log(ξD). (8)

In Fig. 4(b) we show clear evidence for a central charge c = 1,
which is precisely the value for a Luttinger liquid.

An estimate for the effective Luttinger parameter K̃ is
obtained by computing the response to a chemical potential.
It is easily seen [32] that adding the generator of the U(1)
symmetry,

TLL → exp

(
μ

π

∫
dx∇φ(x)

)
TLL,

yields a compressibility that is equal to

κ = − 1

π

d

dμ
〈∇φ〉μ = K̃

ũπ
.

We have an explicit microscopic form for the generator of the
U(1), so we can explicitly implement a chemical potential on
the level of the microscopic transfer matrix as

Tμ(β ) = exp
(
−μ

2
Q

)
T (β ) exp

(
−μ

2
Q

)
.

This shift in the transfer matrix does not affect its eigenvec-
tors, but reshuffles the eigenvalues. Therefore the fixed point
|ψμ〉 will change as a function of μ, and will give rise to
a finite expectation value of the generator. The associated
compressibility

κ = d 〈ψμ| Qi |ψμ〉
dμ

∣∣∣∣
μ=0

will therefore give a finite value. This, in turn, yields a direct
estimate of the effective Luttinger parameter K̃ . Since Q
commutes with the transfer matrix, the partition function will
only be affected in second order, and the second derivative
yields the same value for the compressibility,

κ = − d2 log λμ(β )

dμ2

∣∣∣∣
μ=0

,

where λμ(β ) is the usual eigenvalue per site of the transfer
matrix

λμ(β ) = lim
Nx→∞

〈ψμ| Tμ(β ) |ψμ〉1/Nx .

We can compute this compressibility straightforwardly using
the uniform MPS framework. Indeed, as explained above, the
eigenvalue λμ(β ) is the quantity that is variationally opti-
mized in an MPS fixed-point simulation, whereas the charge
density 〈Qi〉 can be easily computed as an expectation value.

(a)

(b)

(c)

FIG. 4. The XY model at T = 0.7 as a Luttinger liquid. In (a) we
have plotted the dispersion relation of the transfer matrix as defined
by Eq. (7); the dashed line is a straight line with a slope equal to
one, showing that we find a Luttinger velocity exactly equal to one.
In (b) we have plotted the correlation length vs the entanglement
entropy obtained in MPS approximations for the fixed point with
increasing bond dimension (D = 50 : 25 : 175); the fit is made from
the three last points according to the form Eq. (8), yielding a value
for the central charge c = 1.003. In (c) we have plotted the response
in the free energy and the expectation value for Qi with a quadratic
and linear fit, respectively. The same value κ ≈ 1.109 53 is found
from both fits.
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In Fig. 4 it is shown that both quantities yield a consistent
numerical value for the compressibility.

We should note, however, that the transfer matrix Tμ(β ) is
equivalent to the one of the twisted XY model but with an
imaginary value for the twist field,

Tμ(β ) = T (β )U (iμ).

Therefore, the effective Luttinger parameter that we have
defined here is related to the spin stiffness from before,

K̃ = πβρ.

This correspondence, which can be readily seen from the
mapping of the XY model to the sine-Gordon field theory
[6,33], yields the famous [7] value for the spin stiffness at the
critical temperature ρ = 2Tc/π .

In the previous section, we had anticipated that computing
the spin stiffness without introducing a symmetry-breaking
term would not be possible in the thermodynamic limit di-
rectly. The reason that we are here able to compute the spin
stiffness without breaking the U(1) symmetry consists in the
fact that we have expressed it as a thermodynamic quantity
(the compressibility) for which the extensivity properties of
the uniform MPS simulations are ideally suited. This ther-
modyamic quantity, however, is necessarily formulated on the
level of the transfer matrix after the duality transformation,
since an imaginary twist does not translate to a realistic
modification of the classical XY Hamiltonian.

As a final signature of the Luttinger-liquid phase, we
investigate the entanglement spectrum of the MPS fixed point.
As was observed in Ref. [36], the low-lying part of the
entanglement spectrum for a bipartition of the MPS, should
resemble the energy spectrum of a boundary conformal field
theory (CFT). In Fig. 5 we plot the entanglement spectrum of
the MPS fixed point, where we have imposed O(2) symmetry
on the MPS tensor such that we can label the spectrum
with the appropriate quantum numbers. We observe that the
spectrum has a quadratic envelope, and that we obtain an
equidistant spectrum after rescaling the different sectors, in
perfect correspondence with the spectrum of a free-boson
boundary CFT. Moreover, from the rescaling parameter we
can deduce an estimate of the Luttinger parameter K̃ , which
nicely converges to the same value as the one we find using
the compressibility.

V. THE GAPPED PHASE

The characterization of the gapped phase of the XY transfer
matrix using uniform MPS is a lot more straightforward.
Indeed, we expect that the fixed point of a gapped transfer
matrix can be approximated by an MPS with arbitrary pre-
cision. Therefore, we no longer expect that the MPS will
spontaneously break the U(1) or O(2) symmetry, and we
can safely use the fundamental theorem to realize that the
virtual legs of the MPS should transform under (projective)
representations as well [according to Eq. (5)].

As explained in Sec. II B, we are ignorant on which
representations should be chosen on the virtual legs of the
MPS. For that reason, we first plot the entanglement spectrum
of a fixed-point MPS around temperature T ≈ 1.2 without
explicit symmetries on the MPS representation (see Fig. 6).

(a)

(b)

FIG. 5. Entanglement spectrum of the fixed-point MPS of the
XY transfer matrix at T = 0.8. We have imposed the full O(2)
symmetry on the MPS tensor, which implies that the entangle-
ment spectrum is labeled by the irreps on the virtual bonds: two
one-dimensional irreps with charge q = 0 (blue, red), and two-
dimensional irreps with charges q = 1, 2, . . . . In (a) we plot the
bare entanglement spectrum, and we find that the envelope of the
entanglement spectrum follows a quadratic form (striped line). In
(b) we have shifted the different sectors such that the lowest value is
zero; this produces a nice free-boson boundary CFT spectrum. The
inset provides an estimate for the Luttinger parameter (obtained from
the rescaling of the spectrum) as a function of the inverse logarithm
of the MPS correlation length.

We find both isolated and twofold degenerate Schmidt values,
which point to integer representations on the virtual legs.
Indeed, in Fig. 6 we plot the entanglement spectrum with
integer representations on the virtual legs imposed, showing
that the isolated values correspond to either of the two one-
dimensional irreps with n = 0 charge sector; the twofold
degenerate ones correspond to n = 1, 2, . . . .

One of the hallmarks of the BKT transition is the expo-
nential divergence of the correlation length when approaching
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FIG. 6. The entanglement spectrum of the fixed-point MPS at
T = 1.216, where we impose O(2) invariance on the virtual legs
(left) and without explicit symmetries (right). On the left, we label
the different O(2) representations as follows: n = 0 (blue crosses),
q = ±1 (red), q ± 2 (orange), and q = ±3 (purple), whereas on the
right we do not have any labeling; we only show the Schmidt values
above 10−4. The perfect correspondence of the entanglement spectra
with and without explicit symmetries on the virtual legs shows that
the MPS representation for the fixed point only contains integer
representations of O(2).

the critical point from the gapped side [Eq. (2)]. Using MPS,
we can confirm this behavior and use this form to obtain
an estimate for the critical point. The correlation length is a
notoriously hard quantity to converge in MPS simulations, but
using the second gap in the transfer matrix (typically denoted
as δ) it is possible to extrapolate its value in a reliable way
[37,38]. We define

ε = − log |λ1|, δ = (− log |λ1| + log |λ2|),
with λi (i = 0, 1, 2, . . . ) the largest eigenvalues of the transfer
matrix, and extrapolate the finite-D data for the inverse corre-
lation length 1/ξ = ε and δ as

εD = aδD + ε∞, δ → 0. (9)

In Fig. 7 we plot this extrapolation procedure for T = 0.93,
yielding an accurate value for a correlation length of more
than a thousand sites. In Fig. 7 we then plot the extrapolated
correlation lengths as a function of temperature, and fit this to

log ξ = b√
T − Tc

+ c + d
√

T − Tc, (10)

where the extra terms are added to account for deviations
away from the critical point. This fit yields an estimate for the
correlation length of Tc = 0.8930(1), which agrees well with
other numerical results (see Table II). We should note, how-
ever, that estimates for the critical point can depend strongly
on higher-order corrections to the scaling behavior—for the
finite-size extrapolation of the spin stiffness this is clearly the
case [14]. We leave the careful incorporation of higher-order
contributions to the scaling of the correlation length, and
a more accurate estimation of the critical point, for further
study.

The gapped phase is further characterized by the low-lying
spectrum of the transfer matrix, which we define as before

(a)

(b)

FIG. 7. In (a) we plot the extrapolation procedure for T = 0.93,
yielding a value for the correlation length ξ = 1463(4); the maximal
dimension in each block was set at Dmax = 512, yielding a total
MPS bond dimension of D = 3754. In (b) we plot the extrapolated
correlation lengths as a function of temperature. We fit this to the KT
form [Eq. (10)] (red line), yielding a value for the critical temperature
Tc = 0.8930(1).

in Eq. (7). In Fig. 8 we have plotted the spectrum at a
temperature T = 1.3, showing an isolated twofold degener-
ate quasiparticle line; the excited states on this line carry

TABLE II. Numerical estimates for the critical temperature.

Monte Carlo (1979) [10] 0.89
Monte Carlo (2005) [11] 0.8929(1)
Series expansion (2009) [13] 0.89286(8)
Monte Carlo (2012) [12] 0.89289(6)
Monte Carlo (2013) [14] 0.8935(1)
Tensor-renormalization group (2014) [25] 0.8921(19)
Uniform MPS (present work) 0.8930(1)
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FIG. 8. The spectrum ω(p) of the transfer matrix at temperature
T = 1.3. The blue line is the elementary excitation branch with
charge q = ±1, and the red line is the edge of the two-particle
continuum. The yellow dots are excitation energies that fall below
the continuum edge, signaling a bound state in the q = 0 sector.

U(1) quantum numbers q = ±1. Above this elementary one-
particle excitation, we find the two-particle continuum and,
interestingly, around momentum p = π we find a slightly
bound state below the continuum with charge q = 0.

VI. OUTLOOK

In this paper, we have investigated the classical two-
dimensional XY model using uniform MPS methods. We
have shown that an MPS approximation for the fixed point
of the XY transfer matrix breaks the U(1) heavily in the
critical phase, which is expected because the MPS always
induces a finite correlation length in the system. In a sim-
ilar vein, a uniform MPS calculation of the spin stiffness
in the critical U(1) phase is always zero. The reason for
the latter was sought in the fact that uniform MPS work in
the thermodynamic limit directly, whereas the spin stiffness
is a quantity that is necessarily defined in a finite periodic
system; only for systems with a gap do the two definitions
intersect.

Nonetheless, we showed that uniform MPS are an ideal
framework for characterizing the XY model and its phase
transition. First of all, despite the fact that an MPS breaks
U(1) symmetry, we can evaluate local observables with very
high precision in the critical phase. Second, we have shown
that the spin stiffness can be evaluated by introducing a small
magnetic field h, and taking the limit h → 0. The mapping to
an effective Luttinger-liquid field theory can be made explicit
using the MPS framework by computing the central charge,
the dispersion relation, and the compressibility; the latter,
which is the response to a twist with imaginary magnitude, is
used to find very accurate values for the effective Luttinger
parameter K̃ . In addition, we find that the entanglement
spectrum of the MPS is in agreement with a boundary CFT
spectrum. In the gapped phase, the MPS leaves the (non-
Abelian) O(2) symmetry unbroken, which we can use to find
accurate values for the correlation length upon approaching

the critical point; from fitting the exponential divergence of
the correlation length we find Tc ≈ 0.8930, in agreement with
other numerical studies.

We expect that the current setup can be applied to other
two-dimensional classical systems with continuous symme-
tries. Whereas the standard ferromagnetic Heisenberg model
has no phase transition [39], the so-called RP2 models with a
classical Hamiltonian H = −∑

〈i j〉 (�si · �s j )
2 (with �si a three-

dimensional unit vector) potentially host Z2 vortices that drive
a phase transition [40]. A similar phase transition might be
present in the frustrated antiferromagnetic Heisenberg model
on the triangular lattice [41,42].

Our analysis of the versatility of uniform MPS methods
for two-dimensional classical critical phases is equally valid
for one-dimensional quantum spins or electrons. We expect
that our methods can be readily applied for simulating KT
transitions in one-dimensional quantum systems, which is still
a hard case for standard MPS-based techniques to get accurate
results. Also, the relation between these classical topological
transitions and one-dimensional SPT phases [43] that we have
investigated in this paper might prove very interesting in this
context.

The results in this paper will prove instrumental in the
program of simulating systems with unbroken continuous
symmetries with uniform tensor networks and should, in
particular, be useful in the study of two-dimensional quantum
spin liquids with PEPS. Indeed, the norm of a PEPS can be
naturally interpreted as a two-dimensional partition function
and the question often poses itself in what phase is the cor-
responding PEPS transfer matrix. The paradigmatic example
here is the resonating valence-bond (RVB) wave function on
the square lattice, for which the transfer matrix is known to
be in a U(1) phase [44,45], and also other symmetric PEPS
parametrization for (chiral) spin liquids seem to give rise
to critical transfer matrices [46]. The relation between the
critical properties of the transfer matrix, which are essentially
the properties of a two-dimensional classical system, the
symmetries of the PEPS tensors, and the quantum proper-
ties of the PEPS wave function (physical correlation func-
tions, entanglement spectra, etc.) remains, however, largely
unexplored.

In a different direction, the two-dimensional partition func-
tions that we have considered here can be naturally lifted to
the quantum level by promoting the charges on the bonds to
quantum-mechanical degrees of freedom. Upon doing that, we
find quantum-mechanical wave functions for U(1) gauge the-
ories on the lattice. This PEPS construction can be generalized
to a whole variational class of states that are ideally suited
to study the phase diagram of two-dimensional lattice gauge
theories, and, in order to understand the phase transitions, we
will need the tools that were explored in this paper.
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