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On the geometry of entangled states.
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The basic question that is addressed in this paper is finding the closest separable state for a given
entangled state, measured with the Hilbert Schmidt distance. While this problem is in general very
hard, we show that the following strongly related problem can be solved: find the Hilbert Schmidt
distance of an entangled state to the set of all partially transposed states. We prove that this latter
distance can be expressed as a function of the negative eigenvalues of the partial transpose of the
entangled state, and show how it is related to the distance of a state to the set of positive partially
transposed states (PPT-states). We illustrate this by calculating the closest biseparable state to
the W-state, and give a simple and very general proof for the fact that the set of W-type states
is not of measure zero. Next we show that all surfaces with states whose partial transposes have
constant minimal negative eigenvalue are similar to the boundary of PPT states. We illustrate this
with some examples on bipartite qubit states, where contours of constant negativity are plotted on
two-dimensional intersections of the complete state space.
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In this paper we try to get some insight into the ge-
ometrical structure of entangled states. The main goal
will be to characterize the distance of an entangled state
to the set of separable states. Related questions were ad-
dressed in the papers of Zyczkowski et al. [1–3], Pittenger
et al. [4] andWitte et al. [5] (see also Ozawa [6]), although
here we attack the problem from a different perspective.

The concept of negativity will turn out to be very much
related to the Hilbert-Schmidt distance of a state to the
set of separable states. It originates from the observa-
tion due to Peres [7] that taking a partial transpose of a
density matrix associated with a separable state is still
a valid density matrix and thus positive (semi)definite.
Subsequently M.Horodecki,P.Horodecki and R.Horodecki
[8] proved that this was a necessary and sufficient con-
dition for a state to be separable if the dimension of the
Hilbert space does not exceed 6. In higher dimensional
systems, no easy way of determining the separability of
a state exists due to the existence of bound entangled
states. We will therefore content ourselves to calculate
the Hilbert Shmidt distance of an entangled state to the
set of PPT-states (Remark that in the case of two qubits
no bound entangled states exist).

This problem is highly related to calculating the dis-
tance of an entangled state to the set of partially trans-
posed states, as the intersection of the set of all states
with the set of all partially transposed states is equal
to the set of all PPT-states. This is visualized in figure
(1), where the boundary of the convex set of states H
consists of rank deficicient states. The set of partially
transposed states is completely isomorf with the set of
states, and can be seen as some kind of reflection of the
set of states. The intersection of both sets is the convex
set of PPT-states.

From figure (1) it is immediatly clear that the dis-
tance of an entangled state to the PPT ones is equal to
the distance of an entangled state to the set of partially

transposed states iff the closest partially transposed state
is positive (semi)-definite; this condition will turn out to
be almost always true.

H 
H 

PT 

FIG. 1. The set of all states is depicted by H and the set
of all partial transposed states by HPT . The intersection of
both is the set of all PPT-states.

Let us now calculate the closest partially transposed
state to an entangled state. The key observation is the
fact that the Hilbert Schmidt norm is preserved under the
partial transpose map. Therefore the proposed measure
can be defined in the space of partial transposed density
matrices as the minimal Hilbert Schmidt distance of ρPT

to the surface of positive (semi)-definite matrices with
trace 1, this surface being the partial transpose of the
boundary of PPT-states.
We are therefore looking for the best positive semidef-

inite approximation of the indefinite matrix ρPT in the
Hilbert-Schmidt norm:

min
σ∈H

‖ρPT − σ‖2 =
√

Tr ((ρPT − σ)2) (1)

Writing the eigenvalue decomposition ρPT = UDU †, and
absorbing U in σ, this problem is equivalent to finding
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σ such that ‖D − σ‖ is minimal. Using the eigenvalue
decomposition σ = V E2V † with Tr

(

E2
)

= 1, this can
be written as a Lagrange constrained problem with cost
function:

K = ‖D − V E2V †‖2 − λ
(

Tr
(

E2
)

− 1
)

(2)

It is immediatly clear that the optimal unitary V is given
by the identity: a positive definite matrix remains posi-
tive definite if off-diagonal elements are made zero. Dif-
ferentiation leads to the result that the e2i are either equal
to 0, either equal to di + λ. Normalization fixes the
value of λ. Straightforward calculations show that th
e2j corresponding to the negative eigenvalues dj have to
be choosen equal to zero and the other ones either equal
to di+λ either equal to 0, depending on the sign of di+λ.
The algorithm for finding the closest partially transposed
state therefore becomes:

1. Calculate the eigenvalue decomposition of ρPT =
UDU †

2. Define E2 as the unique diagonal positive (semi)-
definite normalized matrix such that its elements
are e2i = di + λ or e2i = 0.

3. The closest partially transposed state ρs is given by

ρs =
(

UE2U †
)PT

. The Hilbert Schmidt distance
between both states is given by

‖ρ− ρs‖2 =

√

√

√

√

(
∑

i∈Ip
di +

∑

i∈In
di)2

np
+

∑

i∈In

d2i ,

(3)

where In is the set of all indices corresponding to
the negative eigenvalues of ρPT , Ip is the set of in-
dices corresponding to positive eigenvalues of ρPT

but for which E2

i = 0, and np denotes the rank of
E2.

If ρs is a state, it is guaranteed to be the closest PPT-
state. Numerical investigations show that for example in
the two qubit case the positiveness of ρs happens in ap-
proximately 97% of the cases. If ρs is not positive, then
the distance to the set of partially transposed states cal-
culated is a (fairly good) lower bound on the distance of
the entangled state to the set of PPT-states.
Let us illustrate the above procedure with an exam-

ple. Say we want to find the closest biseparable 2 × 4
state to the three qubit W -state [10] |W 〉 = (|001〉 +
|010〉 + |100〉)/

√
3. The eigenvalue decomposition of

(|W 〉〈W |)PT = UDU †, with the partial transpose opera-
tion taken over the 4-dimensional Hilbert space, is given
by:

D = diag
(

2/3
√

2/3 1/3 0 0 0 0 −

√

2/3
)

(4)

U =
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(5)

The eigenvalues E2 are readily obtained:

E2 = diag
(

2/3−
√

2/9 2
√

2/9 1/3−
√

2/9 0 0 0 0 0
)

(6)

Taking the partial transpose leads to the state ρs, where
we used the notation c =

√
2/18:
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. . . . . . . .





















(7)

The eigenvalues of ρs are non-negative and it is possi-
ble to show that ρs is separable. We have therefore
found the closest biseparable 2 × 4 state to the |W 〉-
state, and the Hilbert Schmidt distance to it is equal to

(2/3)
3/2

. Recently, the question arised whether the set
of W-type states is of measure zero. Using the language
of the Hilbert-Schmidt distance, this problem is readily
solved. Indeed, the question is solved if we can prove
that the state obtained by mixing the W-state with a
small random completely separable mixed state remains
outside the set of all convex combinations of bisepara-
ble states (with relation to whatever partition). As there
is no biseparable pure state infinitesimally close to the
W-state, and a mixed state not infinitesimally close to
a pure state is always at a finite distance from whatever
pure state, it is proved that the set of W-type states is
indeed not of measure zero. A different proof was given
by Acin et al. [11]. Remark that the above proof is very
general and can be used in systems of arbitrary dimen-
sions: whenever there exists a pure state ψ1 that can
probabilistically be converted into another one ψ2 but
not vice-versa, the set of ψ1-like states minus the set of
the ψ2-like states is of finite measure if there does not
exist a ψ2-like state infinitesimally close to ψ1!
The concept of negativity is also connected to the con-

cept of robustness of entanglement [12]. Indeed, let us
calculate how much an entangled bipartite state of what-
ever dimension has to be mixed with the identity before
it gets PPT. In analogy with the previous derivation of
the Hilbert-Schmidt distance, this amounts to the equiv-
alent problem of how much one has to mix the partial
transpose of ρ with the identity before it gets positive
semi-definite:
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min
t
(1− t)ρPT +

t

4
I4 ≥ 0 (8)

This problem is readily solved, and the solution is

t =
|dmin|

|dmin|+ 1

4

(9)

where dmin is the minimal negative eigenvalue of ρPT .
The minimal t is therefore only a function of the nega-
tive eigenvalues. A geometrical implication of this fact
is that all surfaces of constant dmin are similar to the
boundary of separable and entangled states: the set of
all states with constant dmin can be generated by ex-
trapolating all lines from the identity to the boundary of
separable states such that the distance of the extrapo-
lated state to the identity is a constant factor (> 1) of
the distance of the separable state to the identity.
Let us now move to the case of two qubits. In this

case ρPT has at most one negative eigenvalue [9]. Nu-
merical investigations indicate that in a vast majority of
the states the optimal rank of E2 is equal to three, and if
the rank is equal to two it implies that ρs has a negative
eigenvalue. For the states for which E2 is rank 3, it fol-
lows that their distance to the set of partially transposed
states is given by

‖ρ− ρs‖ =
2√
3
|dmin| (10)

where dmin is the negative eigenvalue of ρPT . Surfaces
of two-qubit states with constant negativity, defined as
N = 2|dmin|, have therefore two distinct properties: they
are all similar to each other and the Hilbert-Schmidt dis-
tance between them is almost everywhere constant.
Let us illustrate the above findings by explicitely cal-

culating some two-dimensional intersections of the set
of all bipartite qubit states including the maximally
mixed state. In the following figures we use the met-
ric based on the Hilbert-Schmidt distance ‖ρ1 − ρ2‖2 =
Tr

(

(ρ1 − ρ2)
†(ρ1 − ρ2)

)

, and directions represented or-
thogonal to each other are orthogonal in the sense that
Tr (A1A2) = 0. Rank deficient density operators always
lie on the boundary of the intersection.
Note that an explicit parameterization of the bound-

ary between the entangled and separable states can easily
be obtained: it is at most a quartic function of the mix-
ing parameters of the states, as their analytic expression
can be obtained by setting the determinant of the partial
transpose equal to zero.
As a first example we consider the plane containing the

maximally mixed state and the states

ρ1 =
1

2







0
1
1
0







(

0 1 1 0
)

ρ2 =







1
0
0
0







(

1 0 0 0
)

(11)
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FIG. 2. Intersection of the convex set of all states includ-
ing states (11) and the maximally mixed state. The contours
represent surfaces of constant negativity, the starred line is
the boundary between separable and entangled states.

The plane is plotted in figure (2) and the boundary of
all (rank-deficient) states is given by the solid enveloppe.
The starred line is the boundary between the convex set
of separable states and the convex set of all states. The
surfaces of constant negativity are indeed all similar to
this boundary. The fact that the distance between these
surfaces is not constant throughout the picture indicates
that the closest separable states lie in other planes. Note
that the Werner states lie along the line between the max-
imally mixed state and the maximally entangled state ρ1.
The thirth extremal point in the undermost left corner is
given by the rank 2 state

ρ =
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(12)

This state is called a quasi-distillable state and has some
remarkable properties: a single copy of it can be des-
tilled infinitesimally close to the singlet state [13,14], it
is the state with minimal negativity for given entangle-
ment of formation [9], and it has furthermore the strange
property that no global unitary operation can increase
its entanglement [15].
Let us now consider a different plane including the

maximally mixed state and

ρ1 =
1

2
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0







(

0 1 1 0
)

ρ2 =
1

2







1
1
0
0







(

1 1 0 0
)

(13)
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This plane is obtained by rotating the previous plane
around the axis ρ1 − I4. In this case (ρ1 − I4) is orthog-
onal to (ρ2 − I4), and a completely different picture is
obtained as shown in figure (3).
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FIG. 3. Intersection of the convex set of all states including
states (13) and the maximally mixed state.

Further rotation of the plane leads to the following
states:
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1

2
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(14)

The intersection of the state space by this plane is shown
in figure (4).
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FIG. 4. Intersection of the convex set of all states including
states (14) and the maximally mixed state.

The surfaces of constant negativity become straight
lines, implying that the closest separable states lie in the
same plane: the Hilbert-Schmidt distance betweem the
surfaces of constant negativity has to be constant if they
consist of parallel planes. Using the procedure previously
outlined, it is indeed trivial to check that the separable
state closest to the maximally entangled state ρ1 lies in
the defined plane and is given by

ρs =
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(15)

Let us rotate the plane further over the (ρ1 − I4)-axis:

ρ1 =
1

2
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(16)

The resulting figure (5) combines the features of the
previous figures. Three entangled disconnected regions
arise, and once more we observe the strange shape of the
boundary between entangled and separable states.
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FIG. 5. Intersection of the convex set of all states including
states (16) and the maximally mixed state.

A plane with a highly symmetric contour lines is ob-
tained if ρ1 and ρ2 are both taken to be maximally en-
tangled states:

4



ρ1 =
1

2







0
1
1
0







(

0 1 1 0
)

ρ2 =
1

2







0
1
−1
0







(

0 1 −1 0
)

(17)

Indeed, only straight lines are obtained in figure (6).
The thirth extremal state is in this case given by ρ =
diag[1/2; 0; 0; 1/2].
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FIG. 6. Intersection of the convex set of all states including
states (17) and the maximally mixed state.

At last, we choose two random planes through the
maximally mixed state and plot them in figure (7).
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FIG. 7. Contour plots of the negativity on random planes
including the maximally mixed state.

The similarity of all planes with constant negativity is
clearly illustrated.
We acknowledge interesting discussions with K. Au-

denaert, A. Pittenger and K. Zyczkowski, who gave the
idea of considering 2-D intersections of the state space.

⋆ frank.verstraete@esat.kuleuven.ac.be
# jeroen.dehaene@esat.kuleuven.ac.be
$ bart.demoor@esat.kuleuven.ac.be
[1] K. Zyczkowski, P. Horodecki, A. Sanpera, M. Lewenstein,

Phys.Rev. A58, 883 (1998).
[2] K. Zyczkowski, W. Slomczynski, J.Phys. A31, 9095

(1998).
[3] K. Zyczkowski, Phys.Rev. A60, 3496 (1999).
[4] A. Pittenger and M. Rubin, quant-ph/0103038.
[5] C. Witte and M. Trucks, Phys.Lett. A257, 14 (1999).
[6] M. Ozawa, Phys. Lett. A268, 158 (2000).
[7] A. Peres, Physical Review Letters 76, 1413 (1996).
[8] M. Horodecki, P. Horodecki and R. Horodecki, Phys.

Lett. A 223, 1 (1996).
[9] F. Verstraete, K. Audenaert, J. Dehaene and B. De Moor,

internal report.
[10] W. Dür, G. Vidal and J. I. Cirac, Phys. Rev. A 62, 062314

(2000).
[11] A. Acn, D. Bru, M. Lewenstein, and A. Sanpera, Phys.

Rev. Let. 87, 040401 (2001).
[12] G. Vidal and R. Tarrach, Phys.Rev. A59,141 (1999).
[13] M. Horodecki, P. Horodecki and R. Horodecki, Phys.

Rev. A 60, 1888 (1999).
[14] F. Verstraete, J. Dehaene and Bart De Moor, Physical

Review A 64, 010101(R) (2001).
[15] F. Verstraete, K. Audenaert and Bart De Moor, Physical

Review A 64, 012316 (2001).

5

http://arxiv.org/abs/quant-ph/0103038

