236 research outputs found

    Band structure of hydrogenated Si nanosheets and nanotubes

    Full text link
    The band structure of fully hydrogenated Si nanosheets and nanotubes are elucidated by the use of an empirical tight-binding model. The hydrogenated Si sheet is a semiconductor with indirect band gap of about 2.2 eV. The symmetries of the wave functions allow us to explain the origin of the gap. We predict that, for certain chiralities, hydrogenated Si nanotubes represent a new type of semiconductor, one with co-existing direct and indirect gaps of exactly the same magnitude. This behavior is different from the Hamada rule established for non-hydrogenated carbon and silicon nanotubes. Comparison to an ab initio calculation is made.Comment: 9 pages, 4 figures, to appear in J. Phys.: Condens. Matte

    A variational method in the problem of screening an external charge in strongly correlated metals

    Full text link
    We describe a variational calculation for the problem of screening of a point charge in a layered correlated metal for dopings close to the Mott transition where the screening is non-linear due to the proximity to the incompressible insulating state. We find that external charge can induce locally incompressible regions and that the non-linear dependence of the screening on density can induce overscreening in the nearest nearby layers while preserving overall charge neutrality.Comment: 7 pages, 1 figure, final version as publishe

    Structure factor of a relaxor ferroelectric

    Get PDF
    We study a minimal model for a relaxor ferroelectric including dipolar interactions, and short-range harmonic and anharmonic forces for the critical modes as in the theory of pure ferroelectrics together with quenched disorder coupled linearly to the critical modes. We present the simplest approximate solution of the model necessary to obtain the principal features of the correlation functions. Specifically, we calculate and compare the structure factor measured by neutron scattering in different characteristic regimes of temperature in the relaxor PbMg1/3Nb2/3O3.U.S. Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357Universidad de Costa Rica. Vicerrectoría de Investigación ( project no. 816-B5-220 )UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA

    David Hume on Banking and Hoarding

    Get PDF
    David Hume opposes banks and favors hoarding. The only bank he reluctantly approves of is a public, 100% reserve bank. Other banks increase money supply and prices, hindering exports and economic growth. For Hume, a 100% reserve public bank would lead to ‘‘the destruction of paper-credit’’ ([1752] 1985, p. 285), fostering economic growth instead by preventing inflation. Additionally, a 100% reserve bank hoards a large quantity of gold and silver, which is available in case of national emergency

    Zebrafish Krüppel-Like Factor 4a Represses Intestinal Cell Proliferation and Promotes Differentiation of Intestinal Cell Lineages

    Get PDF
    BACKGROUND:Mouse krüppel-like factor 4 (Klf4) is a zinc finger-containing transcription factor required for terminal differentiation of goblet cells in the colon. However, studies using either Klf4(-/-) mice or mice with conditionally deleted Klf4 in their gastric epithelia showed different results in the role of Klf4 in epithelial cell proliferation. We used zebrafish as a model organism to gain further understanding of the role of Klf4 in the intestinal cell proliferation and differentiation. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the function of klf4a, a mammalian klf4 homologue by antisense morpholino oligomer knockdown. Zebrafish Klf4a shared high amino acid similarities with human and mouse Klf4. Phylogenetic analysis grouped zebrafish Klf4a together with both human and mouse Klf4 in a branch with high bootstrap value. In zebrafish, we demonstrate that Klf4a represses intestinal cell proliferation based on results of BrdU incorporation, p-Histone 3 immunostaining, and transmission electron microscopy analyses. Decreased PepT1 expression was detected in intestinal bulbs of 80- and 102-hours post fertilization (hpf) klf4a morphants. Significant reduction of alcian blue-stained goblet cell number was identified in intestines of 102- and 120-hpf klf4a morphants. Embryos treated with γ-secretase inhibitor showed increased klf4a expression in the intestine, while decreased klf4a expression and reduction in goblet cell number were observed in embryos injected with Notch intracellular domain (NICD) mRNA. We were able to detect recovery of goblet cell number in 102-hpf embryos that had been co-injected with both klf4a and Notch 1a NICD mRNA. CONCLUSIONS/SIGNIFICANCE:This study provides in vivo evidence showing that zebrafih Klf4a is essential for the repression of intestinal cell proliferation. Zebrafish Klf4a is required for the differentiation of goblet cells and the terminal differentiation of enterocytes. Moreover, the regulation of differentiation of goblet cells in zebrafish intestine by Notch signaling at least partially mediated through Klf4a

    IL-17RA Signaling Amplifies Antibody-Induced Arthritis

    Get PDF
    Objective: To investigate the role of IL-17RA signaling in the effector phase of inflammatory arthritis using the K/BxN serumtransfer model. Methods: Wild-type and Il17ra 2/2 mice were injected with serum isolated from arthritic K/BxN mice and their clinical score was recorded daily. Mice were also harvested on days 12 and 21 and ankles were analyzed for cytokine and chemokine mRNA expression by qPCR on day 12 and for bone and cartilage erosions by histology on day 21, respectively. The induction of cytokine and chemokine expression levels by IL-17A in synovial-like fibroblasts was also analyzed using qPCR. Results: Il17ra 2/2 mice were partially protected from clinical signs of arthritis and had markedly fewer cartilage and bone erosions. The expression of several pro-inflammatory mediators, including the chemokines KC/CXCL1, MIP-2/CXCL2, LIX/ CXCL5 MIP-1c/CCL9, MCP-3/CCL7, MIP-3a/CCL20, the cytokines IL-1b, IL-6, RANKL and the matrix metalloproteinases MMP2, MMP3, and MMP13 were decreased in the ankles of Il17ra 2/2 mice compared to wild-type mice. Many of these proinflammatory genes attenuated in the ankles of Il17ra 2/2 mice were shown to be directly induced by IL-17A in synovial fibroblasts in vitro. Conclusions: IL-17RA signaling plays a role as an amplifier of the effector phase of inflammatory arthritis. This effect is likel

    Disambiguating Multi–Modal Scene Representations Using Perceptual Grouping Constraints

    Get PDF
    In its early stages, the visual system suffers from a lot of ambiguity and noise that severely limits the performance of early vision algorithms. This article presents feedback mechanisms between early visual processes, such as perceptual grouping, stereopsis and depth reconstruction, that allow the system to reduce this ambiguity and improve early representation of visual information. In the first part, the article proposes a local perceptual grouping algorithm that — in addition to commonly used geometric information — makes use of a novel multi–modal measure between local edge/line features. The grouping information is then used to: 1) disambiguate stereopsis by enforcing that stereo matches preserve groups; and 2) correct the reconstruction error due to the image pixel sampling using a linear interpolation over the groups. The integration of mutual feedback between early vision processes is shown to reduce considerably ambiguity and noise without the need for global constraints

    Trans-Chalcone Attenuates Pain and Inflammation in Experimental Acute Gout Arthritis in Mice

    Get PDF
    Gouty arthritis is characterized by an intense inflammatory response to monosodium urate crystals (MSU), which induces severe pain and reduction in the life quality of patients. Trans-Chalcone (1,3-diphenyl-2-propen-1-one) is a flavonoid precursor presenting biological activities such as anti-inflammatory and antioxidant proprieties. Thus, the aim of this work was to evaluate the protective effects of trans-Chalcone in experimental gout arthritis in mice. Mice were treated with trans-Chalcone (3, 10, or 30 mg/kg, per oral) or vehicle (Tween 80 20% plus saline) 30 min before intra-articular injection of MSU (100 μg/knee joint, intra-articular). We observed that trans-Chalcone inhibited MSU-induced mechanical hyperalgesia, edema, and leukocyte recruitment (total leukocytes, neutrophils, and mononuclear cells) in a dose-dependent manner. Trans-Chalcone also decreased inflammatory cell recruitment as observed in Hematoxylin and Eosin (HE) staining and the intensity of fluorescence of LysM-eGFP+ cells in the confocal microscopy. Trans-Chalcone reduced MSU-induced oxidative stress as observed by an increase in the antioxidant defense [Glutathione (GSH), Ferric Reducing (FRAP), and 2,2’-Azinobis-3-ethylbenzothiazoline 6-sulfonic acid (ABTS assays)] and reduction in reactive oxygen and nitrogen species production [superoxide anion (NBT assay) and nitrite (NO assay)]. Furthermore, it reduced in vivo MSU-induced interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and IL-6 production, and increased Transforming growth factor-β (TGF-β) production. Importantly, trans-Chalcone reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and thereby the mRNA expression of the inflammasome components Nlrp3 (cryopyrin), Asc (apoptosis-associated speck-like protein containing a CARD), Pro-caspase-1 and Pro-IL-1β. In vitro, trans-Chalcone reduced the MSU-induced release of IL-1β in lipopolysaccharide (LPS)-primed macrophages. Therefore, the pharmacological effects of trans-Chalcone indicate its therapeutic potential as an analgesic and anti-inflammatory flavonoid for the treatment of gout

    Cloning, tissue and ontogenetic expression of the taurine transporter in the flatfish Senegalese sole (Solea senegalensis)

    Get PDF
    Flatfish species seem to require dietary taurine for normal growth and development. Although dietary taurine supplementation has been recommended for flatfish, little is known about the mechanisms of taurine absorption in the digestive tract of flatfish throughout ontogeny. This study described the cloning and ontogenetic expression of the taurine transporter (TauT) in the flatfish Senegalese sole (Solea senegalensis). Results showed a high similarity between TauT in Senegalese sole and other vertebrates, but a change in TauT amino acid sequences indicates that taurine transport may differ between mammals and fish, reptiles or birds. Moreover, results showed that Senegalese sole metamorphosis is an important developmental trigger to promote taurine transport in larvae, especially in muscle tissues, which may be important for larval growth. Results also indicated that the capacity to uptake dietary taurine in the digestive tract is already established in larvae at the onset of metamorphosis. In Senegalese sole juveniles, TauT expression was highest in brain, heart and eye. These are organs where taurine is usually found in high concentrations and is believed to play important biological roles. In the digestive tract of juveniles, TauT was more expressed in stomach and hindgut, indicating that dietary taurine is quickly absorbed when digestion begins and taurine endogenously used for bile salt conjugation may be recycled at the posterior end of the digestive tract. Therefore, these results suggest an enterohepatic recycling pathway for taurine in Senegalese sole, a process that may be important for maintenance of the taurine body levels in flatfish species
    corecore