42 research outputs found

    A common intronic variant of PARP1 confers melanoma risk and mediates melanocyte growth via regulation of MITF

    Get PDF
    Previous genome-wide association studies have identified a melanoma-associated locus at 1q42.1 that encompasses a ~100-kb region spanning the PARP1 gene. Expression quantitative trait locus (eQTL) analysis in multiple cell types of the melanocytic lineage consistently demonstrated that the 1q42.1 melanoma risk allele (rs3219090[G]) is correlated with higher PARP1 levels. In silico fine-mapping and functional validation identified a common intronic indel, rs144361550 (−/GGGCCC; r2 = 0.947 with rs3219090), as displaying allele-specific transcriptional activity. A proteomic screen identified RECQL as binding to rs144361550 in an allele-preferential manner. In human primary melanocytes, PARP1 promoted cell proliferation and rescued BRAFV600E-induced senescence phenotypes in a PARylation-independent manner. PARP1 also transformed TERT-immortalized melanocytes expressing BRAFV600E. PARP1-mediated senescence rescue was accompanied by transcriptional activation of the melanocyte-lineage survival oncogene MITF, highlighting a new role for PARP1 in melanomagenesis

    Chromatin Structure Following UV-Induced DNA Damage—Repair or Death?

    Get PDF
    In eukaryotes, DNA is compacted into a complex structure known as chromatin. The unravelling of DNA is a crucial step in DNA repair, replication, transcription and recombination as this allows access to DNA for these processes. Failure to package DNA into the nucleosome, the individual unit of chromatin, can lead to genomic instability, driving a cell into apoptosis, senescence, or cellular proliferation. Ultraviolet (UV) radiation damage causes destabilisation of chromatin integrity. UV irradiation induces DNA damage such as photolesions and subjects the chromatin to substantial rearrangements, causing the arrest of transcription forks and cell cycle arrest. Highly conserved processes known as nucleotide and base excision repair (NER and BER) then begin to repair these lesions. However, if DNA repair fails, the cell may be forced into apoptosis. The modification of various histones as well as nucleosome remodelling via ATP-dependent chromatin remodelling complexes are required not only to repair these UV-induced DNA lesions, but also for apoptosis signalling. Histone modifications and nucleosome remodelling in response to UV also lead to the recruitment of various repair and pro-apoptotic proteins. Thus, the way in which a cell responds to UV irradiation via these modifications is important in determining its fate. Failure of these DNA damage response steps can lead to cellular proliferation and oncogenic development, causing skin cancer, hence these chromatin changes are critical for a proper response to UV-induced injury

    Climate change responses among the Maasai Community in Kenya

    Get PDF
    © 2017, Springer Science+Business Media B.V. The impacts of climate change to the dryland areas of East Africa are especially strong, especially if it is considered that these areas have weak institutions and governance systems. Climate change has also affected many rural communities in a severe way, reducing crop yields and sometimes causing crop failure. In Kenya and Tanzania, where drylands cover over around 80 and 50% of their respective land areas, rural populations have been especially affected. Among them is the tribal group of the Maasai, legendary nomad warriors, who have been suffering from persistent droughts and the negative impacts on their cattle herds. This paper describes how climate change affects the Maasai communities in Kenya and the changes seen in their habits and diet, in order to adapt to a changing climate
    corecore