130 research outputs found

    Piecing together the problems in diagnosing low-level chromosomal mosaicism

    Get PDF
    Low-level somatic chromosomal mosaicism, which usually arises from post-zygotic errors, is a known cause of several well defined genetic syndromes and has been implicated in various multifactorial diseases. It is, however, not easy to diagnose, as various physical and technical factors complicate its identification

    New Array Approaches to Explore Single Cells Genomes

    Get PDF
    Microarray analysis enables the genome-wide detection of copy number variations and the investigation of chromosomal instability. Whereas array techniques have been well established for the analysis of unamplified DNA derived from many cells, it has been more challenging to enable the accurate analysis of single cell genomes. In this review, we provide an overview of single cell DNA amplification techniques, the different array approaches, and discuss their potential applications to study human embryos

    An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations.</p> <p>Results</p> <p>We develop and compare two statistical methods (linear models of log ratios and mixed models of absolute measurements). In an analysis of 27 patients seen at our genetics center, we observed that the linear models of the log ratios are advantageous over the mixed models of the absolute intensities.</p> <p>Conclusion</p> <p>The loop design and the performance of the statistical analysis contribute to the quick adoption of array CGH as a routine diagnostic tool. They lower the detection limit of mosaicisms and improve the assignment of copy number variation for genetic association studies.</p

    A speculative outlook on embryonic aneuploidy : Can molecular pathways be involved?

    Get PDF
    The journey of embryonic development starts at oocyte fertilization, which triggers a complex cascade of events and cellular pathways that guide early embryogenesis. Recent technological advances have greatly expanded our knowledge of cleavage-stage embryo development, which is characterized by an increased rate of whole-chromosome losses and gains, mixoploidy, and atypical cleavage morphokinetics. Embryonic aneuploidy significantly contributes to implantation failure, spontaneous miscarriage, stillbirth or congenital birth defects in both natural and assisted human reproduction. Essentially, early embryo development is strongly determined by maternal factors. Owing to considerable limitations associated with human oocyte and embryo research, the use of animal models is inevitable. However, cellular and molecular mechanisms driving the error-prone early stages of development are still poorly described. In this review, we describe known events that lead to aneuploidy in mammalian oocytes and preimplantation embryos. As the processes of oocyte and embryo development are rigorously regulated by multiple signal-transduction pathways, we explore the putative role of signaling pathways in genomic integrity maintenance. Based on the existing evidence from human and animal data, we investigate whether critical early developmental pathways, like Wnt, Hippo and MAPK, together with distinct DNA damage response and DNA repair pathways can be associated with embryo genomic instability, a question that has, so far, remained largely unexplored.Peer reviewe

    Fetal sex determination in twin pregnancies using non-invasive prenatal testing

    Get PDF
    Non-invasive prenatal testing (NIPT) is accurate for fetal sex determination in singleton pregnancies, but its accuracy is not well established in twin pregnancies. Here, we present an accurate sex prediction model to discriminate fetal sex in both dichorionic diamniotic (DCDA) and monochorionic diamniotic/monochorionic monoamniotic (MCDA/MCMA) twin pregnancies. A retrospective analysis was performed using a total of 198 twin pregnancies with documented sex. The prediction was based on a multinomial logistic regression using the normalized frequency of X and Y chromosomes, and fetal fraction estimation. A second-step regression analysis was applied when one or both twins were predicted to be male. The model determines fetal sex with 100% sensitivity and specificity when both twins are female, and with 98% sensitivity and 95% specificity when a male is present. Since sex determination can be clinically important, implementing fetal sex determination in twins will improve overall twin pregnancies management

    Creating basis for introducing non‐invasive prenatal testing in the Estonian public health setting

    Get PDF
    Objective The study aimed to validate a whole‐genome sequencing‐based NIPT laboratory method and our recently developed NIPTmer aneuploidy detection software with the potential to integrate the pipeline into prenatal clinical care in Estonia. Method In total, 424 maternal blood samples were included. Analysis pipeline involved cell‐free DNA extraction, library preparation and massively parallel sequencing on Illumina platform. Aneuploidies were determined with NIPTmer software, which is based on counting pre‐defined per‐chromosome sets of unique k‐mers from sequencing raw data. SeqFF was implemented to estimate cell‐free fetal DNA (cffDNA) fraction. Results NIPTmer identified correctly all samples of non‐mosaic trisomy 21 (T21, 15/15), T18 (9/9), T13 (4/4) and monosomy X (4/4) cases, with the 100% sensitivity. However, one mosaic T18 remained undetected. Six false‐positive (FP) results were observed (FP rate of 1.5%, 6/398), including three for T18 (specificity 99.3%) and three for T13 (specificity 99.3%). The level of cffDNA of <4% was estimated in eight samples, including one sample with T13 and T18. Despite low cffDNA level, these two samples were determined as aneuploid. Conclusion We believe that the developed NIPT method can successfully be used as a universal primary screening test in combination with ultrasound scan for the first trimester fetal examination

    Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos.

    Get PDF
    STUDY QUESTION Is the rate and nature of chromosome instability (CIN) similar between bovine in vivo-derived and in vitro-cultured cleavage-stage embryos? SUMMARY ANSWER There is a major difference regarding chromosome stability of in vivo-derived and in vitro-cultured embryos, as CIN is significantly lower in in vivo-derived cleavage-stage embryos compared to in vitro-cultured embryos. WHAT IS KNOWN ALREADY CIN is common during in vitro embryogenesis and is associated with early embryonic loss in humans, but the stability of in vivo-conceived cleavage-stage embryos remains largely unknown. STUDY DESIGN, SIZE, DURATION Because human in vivo preimplantation embryos are not accessible, bovine (Bos taurus) embryos were used to study CIN in vivo. Five young, healthy, cycling Holstein Friesian heifers were used to analyze single blastomeres of in vivo embryos, in vitro embryos produced by ovum pick up with ovarian stimulation (OPU-IVF), and in vitro embryos produced from in vitro matured oocytes retrieved without ovarian stimulation (IVM-IVF). PARTICIPANTS/MATERIALS, SETTING, METHODS Single blastomeres were isolated from embryos, whole-genome amplified and hybridized on Illumina BovineHD BeadChip arrays together with the bulk DNA from the donor cows (mothers) and the bull (father). DNA was also obtained from the parents of the bull and from the parents of the cows (paternal and maternal grandparents, respectively). Subsequently, genome-wide haplotyping and copy-number profiling was applied to investigate the genomic architecture of 171 single bovine blastomeres of 16 in vivo, 13 OPU-IVF and 13 IVM-IVF embryos. MAIN RESULTS AND THE ROLE OF CHANCE The genomic stability of single blastomeres in both of the in vitro-cultured embryo cohorts was severely compromised (P < 0.0001), and the frequency of whole chromosome or segmental aberrations was higher in embryos produced in vitro than in embryos derived in vivo. Only 18.8% of in vivo-derived embryos contained at least one blastomere with chromosomal anomalies, compared to 69.2% of OPU-IVF embryos (P < 0.01) and 84.6% of IVM-IVF embryos (P < 0.001). LARGE SCALE DATA Genotyping data obtained in this study has been submitted to NCBI Gene Expression Omnibus (GEO; accession number GSE95358) LIMITATIONS REASONS FOR CAUTION There were two main limitations of the study. First, animal models may not always reflect the nature of human embryogenesis, although the use of an animal model to investigate CIN was unavoidable in our study. Second, a limited number of embryos were obtained, therefore more studies are warranted to corroborate the findings. WIDER IMPLICATIONS OF THE FINDINGS Although CIN is also present in in vivo-developed embryos, in vitro procedures exacerbate chromosomal abnormalities during early embryo development. Hence, the present study highlights that IVF treatment compromises embryo viability and should be applied with care. Additionally, our results encourage to refine and improve in vitro culture conditions and assisted reproduction technologies. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by the Agency for Innovation by Science and Technology (IWT) (TBM-090878 to J.R.V. and T.V.), the Research Foundation Flanders (FWO; G.A093.11 N to T.V. and J.R.V. and G.0392.14 N to A.V.S. and J.R.V.), the European Union's FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, SARM, EU324509 to J.R.V., T.V., O.T, A.D., A.S. and A.K.) and Horizon 2020 innovation programme (WIDENLIFE, 692065 to J.R.V., O.T., T.V., A.K. and A.S.). M.Z.E., J.R.V. and T.V. are co-inventors on a patent application ZL913096-PCT/EP2014/068315-WO/2015/028576 (‘Haplotyping and copy-number typing using polymorphic variant allelic frequencies’), licensed to Cartagenia (Agilent Technologies

    Parental genomes segregate into distinct blastomeres during multipolar zygotic divisions leading to mixoploid and chimeric blastocysts

    Get PDF
    BACKGROUND: During normal zygotic division, two haploid parental genomes replicate, unite and segregate into two biparental diploid blastomeres. RESULTS: Contrary to this fundamental biological tenet, we demonstrate here that parental genomes can segregate to distinct blastomeres during the zygotic division resulting in haploid or uniparental diploid and polyploid cells, a phenomenon coined heterogoneic division. By mapping the genomic landscape of 82 blastomeres from 25 bovine zygotes, we show that multipolar zygotic division is a tell-tale of whole-genome segregation errors. Based on the haplotypes and live-imaging of zygotic divisions, we demonstrate that various combinations of androgenetic, gynogenetic, diploid, and polyploid blastomeres arise via distinct parental genome segregation errors including the formation of additional paternal, private parental, or tripolar spindles, or by extrusion of paternal genomes. Hence, we provide evidence that private parental spindles, if failing to congress before anaphase, can lead to whole-genome segregation errors. In addition, anuclear blastomeres are common, indicating that cytokinesis can be uncoupled from karyokinesis. Dissociation of blastocyst-stage embryos further demonstrates that whole-genome segregation errors might lead to mixoploid or chimeric development in both human and cow. Yet, following multipolar zygotic division, fewer embryos reach the blastocyst stage and diploidization occurs frequently indicating that alternatively, blastomeres with genome-wide errors resulting from whole-genome segregation errors can be selected against or contribute to embryonic arrest. CONCLUSIONS: Heterogoneic zygotic division provides an overarching paradigm for the development of mixoploid and chimeric individuals and moles and can be an important cause of embryonic and fetal arrest following natural conception or IVF

    Haploinsufficiency for ANKRD11-flanking genes makes the difference between KBG and 16q24.3 microdeletion syndromes:12 new cases

    Get PDF
    16q24 deletion involving the ANKRD11 gene, ranging from 137 kb to 2 Mb, have been associated with a microdeletion syndrome characterized by variable cognitive impairment, autism spectrum disorder, facial dysmorphisms with dental anomalies, brain abnormalities essentially affecting the corpus callosum and short stature. On the other hand, patients carrying either deletions encompassing solely ANKRD11 or its loss-of-function variants were reported in association with the KBG syndrome, characterized by a very similar phenotype, including mild-to-moderate intellectual disability, short stature and macrodontia of upper incisors, with inter and intrafamilial variability. To assess whether the haploinsufficiency of ANKRD11-flanking genes, such as ZFPM1, CDH15 and ZNF778, contributed to either the severity of the neurological impairment or was associated with other clinical features, we collected 12 new cases with a 16q24.2q24.3 deletion (de novo in 11 cases), ranging from 343 kb to 2.3 Mb. In 11 of them, the deletion involved the ANKRD11 gene, whereas in 1 case only flanking genes upstream to it were deleted. By comparing the clinical and genetic features of our patients with those previously reported, we show that the severity of the neurological phenotype and the frequency of congenital heart defects characterize the deletions that, besides ANKRD11, contain ZFPM1, CDH15 and ZNF778 as well. Moreover, the presence of thrombocytopenia and astigmatism should be taken into account to distinguish between 16q24 microdeletion syndrome and KBG syndrome. The single patient not deleted for ANKRD11, whose phenotype is characterized by milder psychomotor delay, cardiac congenital malformation, thrombocytopenia and astigmatism, confirms all this dat
    corecore