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A B S T R A C T

The journey of embryonic development starts at oocyte fertilization, which triggers a complex cascade of events
and cellular pathways that guide early embryogenesis. Recent technological advances have greatly expanded our
knowledge of cleavage-stage embryo development, which is characterized by an increased rate of whole-
chromosome losses and gains, mixoploidy, and atypical cleavage morphokinetics. Embryonic aneuploidy
significantly contributes to implantation failure, spontaneous miscarriage, stillbirth or congenital birth defects
in both natural and assisted human reproduction. Essentially, early embryo development is strongly determined
by maternal factors. Owing to considerable limitations associated with human oocyte and embryo research, the
use of animal models is inevitable. However, cellular and molecular mechanisms driving the error-prone early
stages of development are still poorly described. In this review, we describe known events that lead to
aneuploidy in mammalian oocytes and preimplantation embryos. As the processes of oocyte and embryo
development are rigorously regulated by multiple signal-transduction pathways, we explore the putative role of
signaling pathways in genomic integrity maintenance. Based on the existing evidence from human and animal
data, we investigate whether critical early developmental pathways, like Wnt, Hippo and MAPK, together with
distinct DNA damage response and DNA repair pathways can be associated with embryo genomic instability, a
question that has, so far, remained largely unexplored.

1. Introduction

Embryonic aneuploidy is a major factor contributing to implanta-
tion failure, spontaneous miscarriage and low in vitro fertilization
(IVF) success rate. Aneuploidy burden at early cleavage-stages in
human is also associated with developmental arrest at the time of
embryonic genome activation (EGA) (Maurer et al., 2015). The advent
of powerful single-cell technologies and time-lapse imaging has
provided novel insights into mechanistic origins of chromosome
imbalances in human preimplantation development (Fig. 1).
Sophisticated single-cell assays uncovered that 70–80% of human
IVF cleavage-stage embryos is made up of cells bearing signatures of

chromosomal instability (CIN), which is a hallmark of tumorigenesis,
characterized by an increased rate of whole or segmental chromosome
aberrations (Chavez et al., 2012; Chow et al., 2014; Mertzanidou et al.,
2012; Vanneste et al., 2009; Voet et al., 2011a; Zamani Esteki et al.,
2015). Time-lapse imaging has revealed that chromosome imbalances
in human IVF embryos are not always underlined only by mitotic
errors, such as anaphase lagging and chromosome nondisjunction, but
are often accompanied by aberrant cleavage patterns with or without
cellular fragmentation. Atypical cell morphokinetics, such as entire
blastomere fusion or failure of cytokinesis, significantly contribute to
genomic instability and can be observed in > 50% of aneuploid embryos
(Chavez et al., 2012; Hardy et al., 1993). Recently, fusion of a second
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polar body was detected by whole-genome haplotyping of trophecto-
derm (TE) biopsy derived from human IVF blastocyst (Ottolini et al.,
2015). The persistence of polar body DNA in the embryo until the
blastocyst stage was rather unexpected, giving the fact that polar bodies
undergo fragmentation after extrusion from the oocyte upon fertiliza-
tion. Also, a novel phenomenon of spontaneous parental genome
segregation in the zygote was discovered in bovine in vitro embryos,
demonstrating that paternal and maternal genomes can be separated
into distinct androgenetic (carrying only paternal genome) and gyno-
genetic (carrying only maternal genome) cell lineages (Destouni et al.,
2016), likely giving rise to chimaerism and mixoploidy, observed in
humans (Edwards et al., 1994; Jarvela et al., 1993; Yamazawa et al.,
2010). Taken together, all these data reveal the remarkable genome
plasticity of preimplantation development.

Different studies on animal models have demonstrated that aneu-
ploidy and mosaicism in early embryos are not restricted only to
humans, but have also been observed in farm animals (Destouni et al.,
2016; Rambags et al., 2005; Viuff et al., 2000; Zudova et al., 2003) and
non-human primates (Dupont et al., 2009, 2010), indicating that they
may serve as appropriate animal models for studying genomic in-
stability in embryos. For instance, by using bovine as a model, we and
Viuff et al. demonstrated that in vitro environment can affect the
frequency and nature of chromosome anomalies in cleavage-stage
embryos (Tsuiko et al., 2017; Viuff et al., 2001). In contrast, sponta-
neous aneuploidy rate in mouse embryos is very low, thus chromosome
segregation errors in mice are usually induced by using different
inhibitors (Bolton et al., 2016; Lightfoot et al., 2006). Using this
approach, a recent study in mice investigated the developmental fate of
induced mosaic aneuploidies and demonstrated that aneuploid cells
become progressively depleted from the embryo at later stages of
development (Bolton et al., 2016). This finding together with the fact
that mosaic embryos can successfully result in live birth of healthy
babies in human (Greco et al., 2015) challenges the hypothesis that
aneuploid embryos are not as developmentally competent as their
euploid counterparts. At the same time, these observations highlight
our limited knowledge on the molecular causes and the developmental
fate of human embryonic CIN and raise important questions regarding
both the burden and nature of aneuploidy that can be tolerated
throughout development.

Essentially, preimplantation development processes are rigorously
regulated by multiple signal-transduction pathways that drive cell
division and cellular growth, differentiation, migration and apoptosis
(Zhang et al., 2007). Interestingly, profound research in the field of
developmental biology and cancer revealed that early embryo devel-
opment shares many similarities with tumorigenesis in terms of cell
proliferation and differentiation mechanisms, as well as similarities in

signal transduction pathways (Ma et al., 2010). In addition, molecular
pathways crucial for oogenesis and embryo development, such as DNA
damage response (DDR), Wnt, Hippo and MAPK are also driving CIN
in cancers, indicating their role in cell cycle progression (Orr and
Compton, 2013). Moreover, recent studies on mouse embryonic stem
cells (ESCs) also demonstrated that altered Wnt or MAPK signaling
leads to impaired cellular differentiation, genomic instability and
reduced survival of ESCs (Augustin et al., 2017; Chen et al., 2015).
However, the role of signaling pathways in maintaining genomic
stability in oogenesis and early embryo development remains elusive.
Therefore, investigating the potential link between signaling pathways
and embryonic aneuploidy may uncover critical aspects of fundamental
developmental processes.

Here, we summarize the origins of aneuploidy in early embryos and
explore how embryonic DNA damage response pathway operates to
ensure embryo survival through preimplantation period. We also focus
on conserved signaling pathways crucial for oocyte and embryo
development, such as Wnt, MAPK, and Hippo, which have all been
implicated in mitotic progression and/or reduced developmental
potential of ESCs. By reviewing the data from human and animal
studies, we speculate whether these pathways can be implicated in
preimplantation genome stability maintenance and if they can be
attributed to embryonic aneuploidy.

2. Origins of aneuploidy in preimplantation embryos

2.1. Meiotic origin of embryonic aneuploidy

Meiosis is one of the defining milestones of human gametogenesis,
which involves two sequential cell divisions, meiosis I (MI) and meiosis
II (MII), that result in the formation of haploid gametes. Genome
integrity of germ cells strongly relies on intact cellular and molecular
mechanisms, involved in accurate chromosome segregation during
meiotic progression. Key meiotic events guiding this specialized
process have been recently described elsewhere (Ohkura, 2015). It is
worth noting that a number of sex-specific differences make female
meiosis more complex. The most obvious difference occurs already at
the late MI prophase: male gametes proceed quickly through the first
meiotic division, while oocytes encounter meiotic arrest that can last
for decades. Second, unlike developing spermatocytes, oocytes lose
their centrioles during meiotic prophase and subsequently segregate
their chromosomes on an acentriolar spindle (Schuh and Ellenberg,
2007). Finally, male germ divisions are symmetric and produce four
equally sized gametes, while eccentric positioning of oocyte meiotic
spindle results in an asymmetric cell division that yields a large
fertilizable egg and three or four small non-functional polar bodies

Fig. 1. Causes of aneuploidy in preimplantation embryos. Different events may contribute to the generation of embryonic aneuploidy, such as mitotic and meiotic defects, DNA
damage, fertilization errors and aberrant cleavage dynamics. Both meiotic and mitotic aneuploidy can increase the likelihood of chromosomal instability within an embryo. Similarly,
aberrant fertilization and impaired cleavage morphokinetics can lead to blastomeres with unstable genomes or chaotic chromosome patterns.
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(Brunet and Verlhac, 2011). Such asymmetric division also allows the
oocyte to retain maximum of it cellular cytoplasm that contains mRNA,
proteins and nutrients necessary for achieving oocyte and embryonic
developmental competence.

Errors in either first or second meiotic division lead to zygotic
inheritance of meiotic-based aneuploidies that can consequently cause
spontaneous miscarriages, stillbirth or congenital birth defects
(Hassold and Hunt, 2001). For example, defects in crossover sites, or
chiasmata, assembly, maintenance and function in both male and
female gametes can lead to failure of proper homolog disjunction in
meiosis I (Fledel-Alon et al., 2009; Hirose et al., 2011). Notably,
meiotic errors in humans are mostly maternal in origin and arise
during the complex stages of oogenesis (reviewed in Webster and
Schuh, 2016). In addition, male cell cycle checkpoint mechanisms seem
to be more robust and can successfully eliminate cells with meiotic
errors regardless of paternal age (Vrooman et al., 2014). In contrast,
female spindle assembly checkpoint (SAC) mechanisms appear to be
weaker and are activated only in the presence of several misaligned
chromosomes, but they are not able to block meiotic progression, when
only a single chromosome fails to align properly (Nagaoka et al., 2011).
Such oocyte-specific SAC-mediated control of meiosis can partially
explain, why oocytes are more prone to aneuploidy than sperm (Sun
and Kim, 2012). Moreover, the incidence of maternal aneuploidy
drastically increases in women along with age, with lowest aneuploidy
rate observed in women between the ages of 26 and 30 (20–27%),
while aneuploidy rate reaches up to 80% by the age 45 (Franasiak et al.,
2014; Munne et al., 1995). One of the reasons for this can be the age-
related decrease in the ability to maintain proper spindle checkpoint
signaling and compromised cohesion between sister chromatids (Yun
et al., 2014). The level of cohesin is significantly reduced in both
human and mouse aged oocytes and it is not capable anymore to
stabilize chiasmata in oocytes or hold sister chromatids together
(Chiang et al., 2011; Tsutsumi et al., 2014). It was shown in mice that
the age-related loss of cohesin may be associated with the depletion of
Shugoshin proteins that protect centromeric cohesin from cleavage and
premature segregation of sister chromatids (Lister et al., 2010). In
addition, age-related defective spindle assembly can be attributed to
the chaotic microtubule dynamics, resulting in multipolar spindle
formation that predisposes the oocyte to chromosome segregation
errors (Nakagawa and FitzHarris, 2017). Importantly, when fertilized,
aneuploid eggs will unavoidably give rise to aneuploid embryos that
will most likely fail to survive.

2.2. Mitotic origin of embryonic aneuploidy

Up to 80% of chromosome imbalances in human IVF embryos are
mitotic in origin and lead to chromosomal mosaicism (the presence of
cells with different genomic content in one organism). In contrast to
meiotic errors, mitotic aberrations are age-independent and can arise
also in embryos from young fertile couples (Vanneste et al., 2009).
Accurate post-zygotic mitotic division also relies on the intact assembly
of mitotic spindle apparatus and the integrity of SAC to ensure proper
separation and segregation of chromosomes to daughter cells. Prior to
the formation of the first mitotic spindle in zygotes, microtubule-
dependent movement of maternal and paternal pronuclei towards each
other takes place. In cattle and humans, the paternally inherited
centrosome nucleates microtubules to form the sperm aster, which,
upon expansion, allows the female pronucleus to associate with
microtubules and move towards the male pronucleus in a dynein-
dependent manner (Clift and Schuh, 2013). Subsequently, the sperm
centrosome generates the mitotic spindle that segregates chromosomes
to two sister blastomeres during the first post-zygotic division.
However, in some fertilized oocytes the first post-zygotic cleavage does
not occur as expected. Under in vitro conditions almost 12% of human
zygotes divide into three cells (Chamayou et al., 2013). Time-lapse
analysis of human IVF embryos has revealed that tripolar division is

frequent in diandric or digynic zygotes with three pronuclei (3PN),
carrying either an extra set of haploid paternal or maternal chromo-
somes, respectively (Staessen and Van Steirteghem, 1997), but bi-
pronuclear (2PN) embryos also exhibit abnormal first post-zygotic
cleavage (Hlinka et al., 2012). In addition, it has been hypothesized
that gonomeric spindle formation and/or asynchronous parental cell
cycles within the zygote can lead to the generation of separate
gynogenetic and androgenetic cells upon first post-zygotic cleavage
(Destouni et al., 2016; Destouni and Vermeesch, 2017).

As embryonic cleavage proceeds, errors in post-zygotic division,
such as centrosome overduplication, impaired spindle assembly,
chromosome cohesion/segregation dynamics and cytokinesis, can
contribute to chromosome mis-segregation and aneuploidy
(Silkworth and Cimini, 2012). Indeed, knockout studies in mouse
pre- and peri-implantation embryos have revealed that disruptions in
key genes involved in the centrosome/kinetochore structure or cell-
cycle checkpoints lead to aneuploidy, mitotic arrest, abnormal mitotic
division and early embryonic lethality (Artus et al., 2006). Although
there are numerous possible mechanisms leading to mitotic errors in
cleavage embryos (reviewed in (Mantikou et al., 2012)), anaphase
lagging and mitotic non-disjunction are the most frequent causes of
embryonic aneuploidy and mosaicism (Fig. 2A). During mitotic non-
disjunction, chromatids fail to separate at the centromere during cell
division, resulting in loss of a chromosome in one daughter cell and a
reciprocal gain in the other. In contrast to chromosome non-disjunc-
tion, anaphase lagging occurs when one of the sister chromatids fails to
connect to the spindle apparatus or is prematurely dissociated from it
and is lost upon cytokinesis, resulting in one diploid daughter cell and
one cell with a monosomy. In addition, erroneous merotelic kineto-
chore-spindle microtubule (k-MT) attachments can also contribute to
the onset of aneuploidy and CIN in early embryos. Merotelic k-MT
attachment occurs when single kinetochore simultaneously attaches
microtubules emerging from opposite spindle poles (Cimini et al.,
2001) (Fig. 2B). It has been proposed that merotely can also induce
centromere-localized DNA breaks leading to sub-chromosomal imbal-
ances that can be accompanied by breakage-fusion-bridge cycle and/or
result in complex genomic rearrangements observed in human IVF
embryos (Vanneste et al., 2009; Voet et al., 2011a, 2011b). Because
kinetochores are attached by MTs from both sides and support
chromosome alignment on a metaphase plate, merotely avoids detec-
tion by SAC, which leads to failure of chromatid segregation and lag of
one chromosome near the central spindle, while the other chromosome
moves towards the spindle pole (Thompson and Compton, 2011).
Consequently, the lagging chromosomes can form micronuclei in the
cytoplasm, providing the basis for cellular fragmentation in human
embryos (Chavez et al., 2012). Once trapped within micronuclei,
chromosomes can undergo defective DNA replication, resulting in
DNA damage and frequent double-strand breaks (DSB) (Crasta et al.,
2012). In turn, DSB can trigger an error-prone non-homologous end-
joining (NHEJ) repair mechanism in micronuclei (Ly et al., 2017) that
can result in chromosomal aberrations. These events may also lead to
chromosome pulverization within the micronuclei. Moreover, chromo-
somal fragments can be incorporated back into the genome of a
developing embryo upon fusion of the micronuclei with blastomeres,
resulting in chaotic chromosome aberration patterns (Chavez et al.,
2012).

3. Can early developmental signaling be linked to embryonic
aneuploidy?

The underlying molecular causes responsible for error-prone
embryo cleavage are largely unknown, as the mechanisms of chromo-
some segregation in preimplantation embryos are still poorly de-
scribed. Extensive research in the cancer field shed some light into
the key signaling pathways that are dysregulated during tumorigenesis,
indicating their potential involvement in maintaining genomic stability
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(Orr and Compton, 2013). Therefore, it is tempting to speculate
whether aberrant molecular signaling may play a role in embryonic
aneuploidy formation and whether findings from cancer research can
be translated to early embryogenesis.

3.1. The DNA damage response and repair pathway

The mechanisms of DDR and DNA repair have essential roles in
maintaining genome stability and its function. In somatic cells, the
DDR pathway is a tightly coordinated signal transduction network,
involving cell-cycle checkpoint activation and DNA damage repair and
tolerance mechanisms via ATM- and ATR-mediated pathways (Smith
et al., 2010). ATM and ATR are the most upstream kinases of DDR
signaling that activate cell-cycle checkpoint proteins CHK1/CHK2 and
DNA repair or apoptotic mechanisms in response to DNA damage
(Marechal and Zou, 2013) (Fig. 3). CHK1 has also been implicated in

mitotic regulations in several ways: (i) it is necessary for centrosome
amplification upon DNA damage, (ii) it regulates spindle function by
participating in establishment of correct k-MT attachment and (iii) it
phosphorylates SAC components and ensures proper chromosome
segregation and cytokinesis (Bourke et al., 2007; Chila et al., 2013;
Peddibhotla et al., 2009; Zachos et al., 2007).

DDR pathway represents one of the most intriguing aspects of
preimplantation development. In contrast to somatic cells, the regula-
tion of DDR pathways and downstream action in preimplantation
embryos seem to vary at different stages of development, potentially
making them more vulnerable to chromosome segregation errors
(Jaroudi and SenGupta, 2007). First, some studies on mouse and
porcine embryos suggest that DNA damage checkpoint and repair may
be insufficient in embryos prior to EGA possibly due to limited ATM
kinase activity (Adiga et al., 2007; Wang et al., 2015). In addition to
cell-cycle checkpoint activation, ATM phosphorylates histone H2AX

Fig. 2. Mechanisms leading to mitotic aneuploidy in preimplantation embryos. A) During mitotic metaphase, the mitotic spindle assembles and chromosomes are aligned
on the metaphase plate along the centre of the cell. Attachment of chromosomes to spindle microtubules (MTs) is mediated by kinetochores (k-MTs attachment) that are assembled on
the centromeres of sister chromatids. In correct amphitelic attachment, k-MTs attach each sister kinetochore to opposite spindle poles, establishing bi-oriented chromosome orientation
that is necessary for proper chromosome segregation. The process is regulated by SAC machinery that prevents premature separation of sister chromatids until proper chromosome
alignment has been achieved and all kinetochores have established a stable connection to bi-polar spindles. Once tension is detected, the SAC is inactivated, MTs shorten and two sister
chromatids become separated until finally cytokinesis divides the cell into two daughter cells with complementary sets of chromosomes. In anaphase lag, erroneous attachment of one of
the chromosomes to mitotic spindle or delayed movement of chromosome at anaphase results in loss of the genetic material, because the lagging chromosome is not incorporated in
either nucleus of the daughter cells. Instead the lost chromosome can form micronuclei. As a result of mitotic non-disjunction, sister chromatids fail to separate properly during
anaphase, resulting in a cell with a loss and a cell with a reciprocal gain of a chromosome. B) In merotelic k-MT attachment, single kinetochore attaches to microtubules extending from
both spindle poles. Because merotely is not detected by SAC, it may cause anaphase lag at the spindle equator or centromeric breakage of the chromosome, leading to aneuploidy or
complex sub-chromosomal rearrangements, respectively.
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(γH2AX) at the site of DSB that recruit necessary DNA repair factors
(Celeste et al., 2002; Paull et al., 2000). However, it was demonstrated
that loss of ATM activity in early mouse embryos and embryonic stem
cells compromised phosphorylation of downstream targets necessary
for DNA DSB repair, consequently leading to proliferation defects and
genomic instability due to chromatid breaks (Yamamoto et al., 2012).
Therefore, if embryos initially lack proper ATM activity, it may partially
explain, why first post-zygotic cell divisions are error-prone: in the
checkpoint-compromised background, DNA and chromosome damage
that results in mitotic failure may be propagated to the next cell cycle,
exacerbating chromosome aberrations within the genome (Hayashi and
Karlseder, 2013).

Second, upon massive DNA damage DDR in somatic cells triggers
apoptosis to eliminate damaged cells, however functional apoptotic
pathways seem to be suppressed in early human and bovine cleavage-
stage embryos (Bazrgar et al., 2014; Fear and Hansen, 2011). In
murine zygotes maternal and paternal pronuclei also respond to severe
sperm DNA damage through a unique non-apoptotic pathway that
delays paternal nuclei replication and provides time to repair DNA
damage (Gawecka et al., 2013). In addition, although SAC is active in
early embryos, it is not able to drive SAC-induced apoptosis at
cleavage-stages of development (Jacobs et al., 2017). The absence of
early apoptotic response suggests that blastomeres with damaged DNA
or aberrant chromosomes are not eliminated during the first post-
zygotic divisions, thus facilitating the survival of the embryo until later
stages. As such, it was also proposed that embryonic cell cycle
checkpoints and regulators may be more permissive, allowing rapid
cleavage divisions. For instance, some of the essential G1 and G2 cell
checkpoint proteins, like RB and WEE1, are silenced in 8-cell human
embryos and are only activated at later stages of development,
suggesting that blastocyst have active cell cycle checkpoints that ensure
chromosome integrity of the developing embryo (Kiessling, 2010;
Kiessling et al., 2009, 2010). Therefore, cells with damaged or
incompletely replicated DNA or improper chromosome alignment
can still proceed to mitosis, bypass SAC-mediated arrest and continue
cell division, leading to increased rates of chromosomal aberrations
and aneuploidy during the first cleavages of early embryos. Consistent
with the idea of permissive checkpoints in the early embryo, a subset of
differentially expressed mitotic genes was identified in human aneu-

ploid embryos compared to euploid ones, including SAC components
BUB1 and BUB3, as well as PTTG1, which prevents premature sister
chromatid separation, and the cell-cycle regulator TP53 (Vera-
Rodriguez et al., 2015). Moreover, many of the differentially expressed
genes were maternal in origin, suggesting that an inherited altered
transcriptome in human zygotes may potentially lead to altered first
cleavage and contribute to propagation of mitotic aneuploidies in early
embryos. These results indirectly support the concept that human
embryos rely on maternal resources to recognize DNA damage and
activate repair mechanisms, ensuring embryo survival during first post-
zygotic cleavages. However, mammalian oocytes, especially human, can
be surprisingly inefficient in responding to DNA damage (Carroll and
Marangos, 2013; Wang et al., 2017), which may potentially explain the
poor oocyte competence to maintain genomic stability in early embryos
prior to EGA. Moreover, DNA repair efficiency significantly drops in
aged mammalian oocytes derived from mice, human and non-human
primates due to impaired ATM-mediated DDR (Titus et al., 2013;
Zhang et al., 2015).

Finally, paternal and maternal genome of mammalian zygotes have
a different chromatin configuration (Burton and Torres-Padilla, 2014).
Epigenetic asymmetry in the human zygote makes paternal chromo-
somes more susceptible to kinetochore attachment and mis-segrega-
tion errors (van de Werken et al., 2015). Interestingly, a recent study in
mice uncovered that DNA damage repair pathways are also actively
involved in zygotic reprogramming of the paternal genome (Ladstatter
and Tachibana-Konwalski, 2016). The authors discovered a CHK1-
mediated zygotic checkpoint that monitors demethylation-associated
DNA lesions on the paternal genome in zygotes and prevents it from
entering into mitosis in the presence of unrepaired DNA damage. This
observation enforces previous findings, demonstrating that depletion of
CHK1 function in mouse embryos leads to the formation of abnormal
nuclei and failure to activate cell cycle arrest before mitosis upon DNA
damage and replication block (Liu et al., 2000; Takai et al., 2000).
Consequently, unresolved DNA damage may impair centrosome in-
tegrity, resulting in multipolarity and chromosome missegregation
during mitotic divisions (Hut et al., 2003).

Despite the safeguarding role of the DDR, its activation during
mitosis was unexpectedly found to induce errors in chromosome
segregation in somatic cancer cells by hyperstabilizing k-MT attach-
ments (Bakhoum et al., 2014), making the role of DDR in mitotic
processes a topic of intense investigation (Hayashi and Karlseder,
2013). However, because embryos have a distinct DNA damage coping
mechanism compared to somatic cells, further research is warranted to
reveal, whether DDR activation can interfere with mitotic fidelity in
early embryogenesis.

3.2. The Wnt signaling pathway

The Wnt signaling pathway plays a critical role in embryo axis
formation, cell migration and differentiation, maintenance of cell
pluripotency and subsequent embryonic and placental development
(Altmäe et al., 2010; Horcajadas et al., 2007; Knofler and Pollheimer,
2013; Tepekoy et al., 2015). The Wnt signaling includes Wnt ligands,
G-protein-coupled Frizzled (FZD) family receptors and lipoprotein
receptor-related proteins (LRPs) (Miller, 2002), and operates via three
different pathways: the canonical Wnt/β-catenin pathway, the non-
canonical Wnt/Ca2+ pathway and the non-canonical planar cell
polarity pathway (Komiya and Habas, 2008). The most studied path-
way is the canonical β-catenin-dependent signaling pathway, which
regulates the cytoplasmic accumulation of β-catenin and its nuclear
translocation and activity (Fig. 4) (reviewed in MacDonald et al., 2009).

Many of the Wnt components are expressed in mouse and human
oocytes and early embryos (Assou et al., 2010; Harwood et al., 2008;
Wang et al., 2004). It has been shown that Wnt-mediated signaling in
mice coordinates germ cell entry into meiosis and presumably follicular
maturation (Naillat et al., 2010). In addition, a meta-analysis of bovine,

Fig. 3. Simplified representation of the DNA damage response pathway. DNA
damage- and replication stress-induced double-strand and single-strand DNA breaks
activate ATM and ATR kinases, respectively. ATM and ATR are key signal transducers of
downstream DDR pathways. Once phosphorylated, they trigger the activation of down-
stream cell-cycle regulators CHK1 and CHK2, which in turn signal downstream
checkpoints that stop cell-cycle progression and activate DNA damage repair and
tolerance mechanisms. ATM also phosphorylates H2AX and amplifies DNA damage
signal. In addition, DDR induces the activation of tumor suppressor p53, a critical sensor
of DNA damage, which determines cell fate depending on the levels of DNA damage or
DNA-repair efficiency.
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mouse and human oocytes suggested that negative regulation of Wnt
decreases oocyte quality, which in turn can adversely affect early
embryonic development (O'Shea et al., 2012). At the same time, the
Wnt pathway in oocytes seems to be regulated in timely fashion: the
canonical Wnt signaling in mouse oocytes was shown to be increasingly
activated from the secondary stage of follicular development until
ovulation, when Wnt signal becomes depleted (Usongo et al., 2012). In
contrast, ovulated oocytes with still active Wnt signal transduction have
abnormal morphology and show signs of cytoplasmic fragmentation.
Such oocyte cytoplasmic fragmentation can deplete early embryo of key
molecules, compromisingits developmental potential. It is worth noting
that more than 80% of human IVF embryos exhibit some degree of
fragmentation after first cell divisions, which is mostly of maternal
origin (Han et al., 2010; Salumets et al., 2002). Because Wnt
components seem to have an important role in ovarian folliculogenesis
(Hernandez Gifford, 2015) and its dysregulation was associated with
decreased oocyte quality, it might be plausible that proper regulation of
Wnt pathway also determines oocyte cytoplasmic maturation, which is
necessary to meet the demands of a cleaving embryo until EGA and
support its survival until later stages of embryogenesis (Stensen et al.,
2014).

In addition to regulating gene transcription, numerous Wnt com-
ponents have been implicated in mitotic progression in somatic cells by
modulating microtubule dynamics, spindle formation and centrosome
division. In particular, various key Wnt players, such as the scaffolding
protein disheveled (DVL), AXIN1, AXIN2/conductin, GSK3, β-catenin
and APC are all localized on various mitotic structures, where they
might have specific functions (Hadjihannas et al., 2006; Niehrs and
Acebron, 2012) (Fig. 5A–C). For example, both β-catenin and GSK3
are implicated in microtubule growth and centrosome separation
(Valenta et al., 2012; Wakefield et al., 2003). DVL was shown to
localize to centrosomes during mitosis, where it is required for spindle
orientation and stable k-MT attachment upon phosphorylation by
negative Wnt/ β-catenin signaling regulator, polo-like kinase 1
(PLK1) (Fig. 5B) (Kikuchi et al., 2010). In addition, DVL can recruit
SAC components MPS1, BUB1 and BUBR1 to kinetochores (Fig. 5C)
(Kikuchi et al., 2010). AXIN1 and AXIN2 are also localized on the
centrosomes, where PLK1 dynamically phosphorylates AXIN1 that
might play a role in microtubule stabilization (Ruan et al., 2012), while
AXIN2 appears to be involved in regulation of centrosome cohesion
(Hadjihannas et al., 2010). Finally, APC is localized to the mitotic

spindle and ensures proper chromosome segregation by correcting k-
MT attachment errors (Fodde et al., 2001; Kaplan et al., 2001).

In parallel to somatic cells, Wnt pathway components might also be
involved in regulation of cell cycle progression in oocytes and early
embryos. For instance, GSK3 inhibitors induced abnormal spindle
formation and chromatin segregation during the first post-zygotic
cleavage in mouse zygotes, and such embryos became arrested at the
two-cell stage (Acevedo et al., 2007). Downregulation of Axin-1 during
meiotic maturation of mouse oocytes leads to defective spindle
organization, impaired pronuclear formation and first polar body
extrusion (He et al., 2016). Both APC and DVL are also highly
expressed in human MII oocytes, where they may potentially fulfill
the role of stabilizers of k-MT attachments throughout MII arrest
(Wells et al., 2005). Lastly, PLK1 was associated with accurate spindle
assembly and chromosome segregation during prometaphase stage of
the first post-zygotic divisions in porcine embryos (Zhang et al., 2017).

While it is well established that multiple Wnt pathway components
play an important role during mitosis, there is accumulating evidence
that they can execute mitotic regulation in a Wnt-independent matter.
In addition, how can Wnt signaling cascade function in mitotic spindle
and k-MT formation, when the transcription machinery is shut off? A
potential answer to that question was provided by an elegant study in
HeLa cell lines, demonstrating that Wnt-dependent stabilization of
proteins (Wnt/STOP), which peaks at G2/M transition and mitosis,
occurs in a β-catenin-independent manner (Acebron et al., 2014). It
was established that Wnt/STOP is required for proper microtubule
dynamics within the mitotic spindle and faithful chromosome segrega-
tion. Wnt/STOP seems to be regulated by basal Wnt signaling, as
repression of LRP5/6 or DVL led to erroneous k-MT attachments,
resulting in abnormal spindle formation and chromosome lagging
(Stolz et al., 2015). Based on these novel findings, it cannot be excluded
that Wnt/STOP might also control other regulatory steps during
mitotic division, but the clear function of this pathway remains to be
elucidated. Intriguingly, Wnt/STOP appears to be active in MII
arrested Xenopus oocytes, where it might be involved in stabilization
of proteins required for subsequent embryonic division, as inhibition of
maternal Wnt/STOP signaling in oocytes led to cleavage arrest after
fertilization (Huang et al., 2015). In addition, because mammalian
cleavage-stage embryos often exhibit aneuploidy, one can assume that
perhaps maternal Wnt/STOP is also crucial for genome integrity
maintenance in mammals by controlling mitotic microtubule assembly.

Fig. 4. Schematic representation of the canonical Wnt/β-catenin pathway. A) In the absence of Wnt signaling, cytoplasmic β-catenin is bound to a destruction complex,
incorporating AXIN1, APC, GSK3 and CK1. As a result, β-catenin is phosphorylated by CK1 and GSK3. Phosphorylated β-catenin is subsequently ubiquitinated and undergoes
proteosomal degradation. In the absence of β-catenin, the T cell-specific factor/lymphoid enhancer factor (TCF/LEF) transcription factors are suppressed, and Wnt target genes are
silenced. B) In the presence of Wnt ligands, a receptor complex forms between Frizzled (FZD) and lipoprotein receptor-related protein 5/6 (LRP5/6). Subsequently, DVL recruitment by
the FZD-WNT-LRP5/6 complex leads to LRP5/6 phosphorylation,AXIN1 recruitment and inhibition of the β-catenin destruction complex. As a result, β-catenin avoids degradation by
AXIN-mediated destruction complex, allowing it to accumulate in the cytoplasm and translocate to the nucleus, where it serves as a co-activator for TCF/LEF family of transcription
factors to regulate Wnt target genes.
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Although this assumption is still premature, it opens up new horizons
to investigate novel potential roles of this pathway in early post-zygotic
divisions in embryos.

3.3. The MAPK pathway

The mammalian MAP kinase signaling pathway is a highly con-
served and complex signal transduction network that involves a
cascade of protein phosphorylations, which culminate in activation of
mitogen-activated protein kinases (MAPKs). Activated MAPK enzymes
tightly coordinate cell proliferation, differentiation and survival, and
include conventional MAPKs, such as extracellular signal-regulated
kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1–3 (JNK1-
3), p38, and ERK5, as well as atypical MAPK enzymes with distinct
regulation and function (reviewed in (Cargnello and Roux, 2011)). In
somatic cells, MAPK/ERK signaling, also known as RAS-RAF-MEK-
ERK pathway, contributes to proper spindle assembly, chromosome
alignment and segregation, while p38-MAPK regulates cytoskeleton
organization and participates in mitotic checkpoint regulation (Zhang
and Liu, 2002). Because of important roles in different mitotic
processes, it comes as no surprise that deregulation of the MAPK
signaling has been implicated in neurodegenerative disorders and
various types of cancer (Kim and Choi, 2010).

In oocyte biology, the MAPK pathway plays a crucial role in oocyte
nuclear maturation by regulating meiotic processes. In mammals, the
MOS kinase-mediated activation of MOS/MEK1/MAPK signaling
cascade is necessary for maintaining meiotic metaphase II arrest.
Maturing mouse Mos knockout oocytes fail to activate MAPK, which
leads to distorted spindle and microtubule organization and sponta-
neous exit from meiosis. As a result, mice lacking MOS function often
presented with ovarian teratomas due to parthenogenetic activation of
the oocyte (Choi et al., 1996; Hashimoto et al., 1994; Verlhac et al.,
1996). The importance of MAPK/ERK in meiotic arrest has also been
corroborated by genome-wide analysis of gene expression and func-
tional profiling in mice, demonstrating the lack of MAPK signaling in
parthenote blastocysts (Liu et al., 2010). In addition, p38-MAPK is an
important component of microtubule organizing centre (MTOC) in
mouse oocytes that recruits γ-tubulin for spindle assembly, spindle
pole formation and chromosome alignment (Ou et al., 2010). p38-
MAPK also phosphorylates MAPK-activated protein kinase 2 (MK2)
that participates in meiotic cell cycle progression by regulating bipolar
spindle stability, kMTs and chromosome segregation, while depletion

of MK2 compromises both microtubule tension and SAC function,
consequently leading to disorganized meiotic spindle and aneuploidy in
mouse oocytes (Yuan et al., 2010).

In contrast to oocyte, the role of MAPK signaling in mammalian
early preimplantation development is contradictory and remains
elusive. Inhibition of MAPK pathway in sea urchin embryos leads to
mitotic defects, such as aberrant spindle formation, chromosome
misalignment and poor segregation, resulting in abnormal number of
chromosomes in daughter cells (Zhang et al., 2005). Previous studies
on mouse embryos also demonstrated a distinct mitotic M-phase-
specific activation of MAP kinase signaling via RAS/RAF/MEK/ERK
cascade (Haraguchi et al., 1998) that seems to be essential for cell cycle
progression up to 8-cell stage (Maekawa et al., 2007). Intriguingly, the
MAPK/ERK pathway is involved in protecting the the genomic integrity
of mouse ESCs, as Erk depletion results in elevated rate of chromosome
breakage and fusion, as well as telomere shortening possibly due to
DNA damage (Chen et al., 2015). This suggests that MAPK signaling
may have an important role in mitotic cell cycle progression, but
whether the inhibition of MAPK/ERK signaling in mammals can lead
to similar mitotic defects that were observed in sea urchin embryos
remains to be tested.

It is worth noting that caution should be applied, as some
differences in MAPK regulation and function can be observed between
mammalian species. For instance, JNK- and p38-MAPK pathways play
an important role in regulation of compaction and blastocyst formation
in mouse preimplantation embryos (Bell and Watson, 2013; Maekawa
et al., 2005). In the presence of p38-MAPK inhibitors, mouse embryos
have delayed development, abnormal embryo morphology at the 8–16
cell stage and an increased rate of apoptosis in ICM (Sozen et al.,
2015). In addition, p38-MAPK-deficient embryos also showed com-
plete loss of filamentous actin (F-actin), an essential component of
mitotic spindle (Natale et al., 2004; Paliga et al., 2005; Woolner et al.,
2008). F-actin is involved in the cleavage furrow formation and its
decreased function due long-term deficiency of p38-MAPK in mouse
hepatocyte cells was shown to result in cytokinetic failure (Tormos
et al., 2017). In turn, cytokinetic failure is associated with impaired
human embryo compaction at 8–16 cell stage and the formation of
multinucleated (polyploid) blastomeres (Iwata et al., 2014). As such, it
is plausible that the embryonic phenotype observed in p38-MAPK-
deficient mice may be a direct result of F-actin deprivation. In contrast,
the development of bovine embryos was not significantly impaired
upon inhibition of p38-MAPK, and only simultaneous absence of both

Fig. 5. Involvement of Wnt pathway components in mitotic regulation in somatic cells. A) Wnt pathway components APC and DVL bind to two Wnt receptors, Frizzled
(FZD) and lipoprotein receptor-related protein 5/6 (LRP5/6), to anchor astral microtubules and ensure proper spindle orientation upon PLK1-mediated phosphorylation of DVL and
Wnt receptor-mediated signaling. B) APC together with DVL localizes at the microtubule–kinetochore interface to regulate correct microtubule binding to kinetochores in a Wnt-
independent manner. C) DVL can also activate the spindle assembly checkpoint (SAC) by phosphorylating MPS1 and recruiting SAC components.
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p38-MAPK and MAPK/ERK signaling leads to similar developmental
block as was observed in mouse embryos (Madan et al., 2005).
Therefore, understanding the biological significance and regulatory
mechanisms of MAPK pathway in mammals, including human, might
provide novel insight into mitotic regulation of preimplantation devel-
opment.

3.4. The Hippo signaling pathway

The evolutionally conserved Hippo pathway, crucial for maintaining
organ growth through regulation of cell proliferation and apoptosis,
was first discovered as a tumor suppressor pathway in Drosophila
(Justice et al., 1995). The core kinase cascade components of the Hippo
signaling pathway are MST1/MST2 and LATS1/LATS2 (Meng et al.,
2015; Oh et al., 2009), while the transcriptional co-activators YAP and
TAZ act as main downstream effectors (Piccolo et al., 2014). In
mammals, the Hippo pathway is initially activated by TAO kinases
that phosphorylate MST1/2, which subsequently recruit and phosphor-
ylate LATS1/2 with the help of SAV1 and MOB1A/B (reviewed in
(Meng et al., 2016)). In recent years the Hippo pathway has been
mostly studied in mouse embryogenesis, where it modulates cellular
differentiation and lineage segregation into TE and ICM through
nuclear localization of YAP/TAZ in the mouse blastocyst (Fig. 6)
(Anani et al., 2014; Leung and Zernicka-Goetz, 2013; Nishioka et al.,
2009; Posfai et al., 2017). The Hippo MST/LATS/YAP signaling
cascade might be conserved between species, but detailed information
about this pathway in human is scarce.

Key Hippo signaling genes, such as YAP, TAZ, MST1/2, SAV1 and
LATS1/2, are expressed in mouse and human ovarian follicles
(Kawamura et al., 2013). Dynamic Hippo signaling has been implicated
in mouse oocyte maturation, proliferation of granulosa cells and
follicular atresia with main Hippo components showing differential
expression at different time points of folliculogenesis (Xiang et al.,
2015). Interestingly, in Drosophila oogenesis, Hippo pathway is
required for oocyte polarization via microtubule-network orientation
and the establishment of anterior-posterior axis. The disruption of

Hippo in fruit fly leads to aberrant follicle cell differentiation and loss
of oocyte polarity due to disorganized microtubule formation, which
may predispose the oocyte to chromosome missegregation (Polesello
and Tapon, 2007; Yu et al., 2008). In contrast to Drosophila, oocyte-
specific deletion of YAP does not seem to affect oogenesis in mice, as
mouse MII oocytes have well organized spindles (Yu et al., 2016).
However, if lack of maternal YAP had no effect on mouse oocyte
development, then mouse embryos already exhibited prolonged two-to-
four cell stage progression compared to wild type, while double-
knockout embryos had severe morphokinetic defects that led to
embryonic arrest before compaction. As such, it seems plausible to
investigate the precise role of YAP in mammalian oocyte and early
embryos.

In somatic cells, the activity of MST1 and MST2 was shown to
increase during mitotic divisions, indicating their potential involvement
in mitotic progression (Ling et al., 2008; Matallanas et al., 2008).
Notably, MST1/MST2 deficiency results in severe developmental defects
in early mouse embryos (Oh et al., 2009). Because downregulation of
both MST1 and MST2 in human HeLa cells often causes chromosome
misalignment and anaphase delay (Oh et al., 2010), the question arises
whether early development of MST1/MST2-deficient embryos can also
be compromised due to consequent accumulation of mitotic errors.

Similarly to MST1/MST2, LATS1 and LATS2 kinases also interact
with various cell-cycle regulators and mitotic checkpoints (Tao et al.,
1999; Yabuta et al., 2011; Yang et al., 2001), although the mechanisms
of LATS1/2 activation are largely unclear. Nevertheless, the depletion
of LATS2 in mouse embryonic fibroblasts leads to genomic instability,
micronuclei formation, centrosome amplification and cytokinetic fail-
ure (McPherson et al., 2004). In addition, loss of LATS2 leads to down-
regulation of critical cell-cycle regulators, resulting in mitotic defects in
somatic cells (Yabuta et al., 2007). Importantly, the depletion of key
mitotic regulators in mouse and porcine embryos leads to develop-
mental arrest and embryonic lethality by the blastocyst stage, possibly
due to the accumulation of chromosomal defects (Diril et al., 2012;
Wang and Kim, 2016). Collectively these data demonstrate that Hippo
components may participate in mitotic processes and their abnormal

Fig. 6. Schematic representation of the cell position-dependent Hippo signaling cascade in blastocyst cell differentiation. Hippo signaling is associated with cell
differentiation and lineage segregation in mouse blastocyst. In internal cells, highly active Hippo signaling triggers phosphorylation of LATS1/2 by MST1/2. Subsequently, LATS1/2
phosphorylates YAP/TAZ, which remains in the cytoplasm, where it is degraded by the proteasome. Consequently, TEAD4 remains inactive and these cells adopt an inner cell mass
(ICM) fate. In the outer cell layer, as a result of diminished Hippo signaling, YAP/TAZ remains unphosphorylated and moves to the nucleus, where it accumulates and activates TEAD4.
Consequently, active TEAD4 induces the activation of trophectoderm (TE)-specific factors and cells adopt TE fate.
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function may contribute to destabilizing genomic integrity. Further
studies are required to enhance our understanding of the regulation of
Hippo cascade components and to elucidate their potential role in
genome stability in preimplantation embryos.

4. Conclusion

Research in the cancer field has highlighted some of the signaling
pathways that may contribute to accurate mitotic progression by
ensuring proper spindle formation and chromosome segregation dur-
ing cell division. If deregulated, the same pathways can lead to genomic
instability in somatic cancer cells. Moreover, embryonic stem cells with
aberrant molecular signaling cannot be maintained due to self-renewal
and chromosomal defects. However, currently it is not entirely clear
whether or not altered signaling can lead to embryonic aneuploidy
during preimplantation development. As such, this review had two
main purposes: first, to give an overview on the origins of aneuploidy in
preimplantation embryos; and second, to review the available human
and animal data on the involvement of signaling pathways in promot-
ing genomic stability; and to put this knowledge together into a
speculative perspective on how alteration of molecular signaling may
be responsible for aneuploidy in oocytes and early embryos. Although
the robust links between molecular pathways and CIN in embryos are
yet to be determined, different molecular signaling components have
already been associated with genome integrity in both oocytes and
embryos. Despite the fact that the chromosome segregation errors are
unlikely to be linked to only one particular pathway, our understanding
on the regulation of intracellular signaling within the mammalian
embryo may likely lead to a better understanding of aetiology of
embryonic aneuploidy, a question that has a direct clinical implication.
However, caution is warranted, when extrapolating the data obtained
from different animal models, as they may not always reflect the nature
of human embryogenesis. We anticipate that future research will
pursuit important fundamental questions that will unravel in greater
detail (i) the role of signaling pathways, if any, in ensuring genomic
stability of early embryos, (ii) the role of maternal factors in first post-
zygotic mitotic processes and (iii) how maternal age and in vitro
conditions may lead to altered expression of genes involved in oocyte
and early embryo signaling.
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