216 research outputs found

    A genome-wide association study of corneal astigmatism: The CREAM Consortium

    Get PDF
    PURPOSE: To identify genes and genetic markers associated with corneal astigmatism. METHODS: A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. RESULTS: The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha (PDGFRA) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08–1.16), p=5.55×10−9. No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans—claudin-7 (CLDN7), acid phosphatase 2, lysosomal (ACP2), and TNF alpha-induced protein 8 like 3 (TNFAIP8L3). CONCLUSIONS: In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7, ACP2, and TNFAIP8L3, that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism

    Stable Carbon and Nitrogen Isotopes in a Peat Profile Are Influenced by Early Stage Diagenesis and Changes in Atmospheric CO2 and N Deposition

    Get PDF
    In this study, we test whether the δ13C and δ15N in a peat profile are, respectively, linked to the recent dilution of atmospheric δ13CO2 caused by increased fossil fuel combustion and changes in atmospheric δ15N deposition. We analysed bulk peat and Sphagnum fuscum branch C and N concentrations and bulk peat, S. fuscum branch and Andromeda polifolia leaf δ13C and δ15N from a 30-cm hummock-like peat profile from an Aapa mire in northern Finland. Statistically significant correlations were found between the dilution of atmospheric δ13CO2 and bulk peat δ13C, as well as between historically increasing wet N deposition and bulk peat δ15N. However, these correlations may be affected by early stage kinetic fractionation during decomposition and possibly other processes. We conclude that bulk peat stable carbon and nitrogen isotope ratios may reflect the dilution of atmospheric δ13CO2 and the changes in δ15N deposition, but probably also reflect the effects of early stage kinetic fractionation during diagenesis. This needs to be taken into account when interpreting palaeodata. There is a need for further studies of δ15N profiles in sufficiently old dated cores from sites with different rates of decomposition: These would facilitate more reliable separation of depositional δ15N from patterns caused by other processes

    A genome-wide association study for corneal astigmatism: The CREAM Consortium

    Get PDF
    Purpose: To identify genes and genetic markers associated with corneal astigmatism. Methods: A meta-analysis was performed of genome-wide association studies (GWAS) of corneal astigmatism undertaken for 14 European ancestry (N = 22,250) and 8 Asian ancestry (N = 9,120) cohorts by the CREAM Consortium. Cases were defined as having >0.75 D of corneal astigmatism. For the meta-analysed results of European ancestry cohorts, subsequent gene-based and gene-set analyses were performed using VEGAS2 and MAGMA software. Additionally, estimates of SNP-based heritability for corneal and refractive astigmatism and spherical equivalent were calculated for Europeans using LD score regression. Results: Meta-analysis of all cohorts identified a genome-wide significant locus near the gene PDGFRA (platelet derived growth factor receptor alpha): top SNP: rs7673984, odds ratio = 1.12 (95% CI: 1.08-1.16), P = 5.55 x 10-9. No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified 3 novel candidate genes for corneal astigmatism in Europeans: CLDN7 (claudin-7), ACP2 (acid phosphatase 2, lysosomal) and TNFAIP8L3 (TNF alpha induced protein 8 like 3). Conclusions: In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified 3 novel candidate genes CLDN7, ACP2 and TNFAIP8L3 that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors to the development of astigmatism

    Genetically Programmed Differences in Epidermal Host Defense between Psoriasis and Atopic Dermatitis Patients

    Get PDF
    In the past decades, chronic inflammatory diseases such as psoriasis, atopic dermatitis, asthma, Crohn’s disease and celiac disease were generally regarded as immune-mediated conditions involving activated T-cells and proinflammatory cytokines produced by these cells. This paradigm has recently been challenged by the finding that mutations and polymorphisms in epithelium-expressed genes involved in physical barrier function or innate immunity, are risk factors of these conditions. We used a functional genomics approach to analyze cultured keratinocytes from patients with psoriasis or atopic dermatitis and healthy controls. First passage primary cells derived from non-lesional skin were stimulated with pro-inflammatory cytokines, and expression of a panel of 55 genes associated with epidermal differentiation and cutaneous inflammation was measured by quantitative PCR. A subset of these genes was analyzed at the protein level. Using cluster analysis and multivariate analysis of variance we identified groups of genes that were differentially expressed, and could, depending on the stimulus, provide a disease-specific gene expression signature. We found particularly large differences in expression levels of innate immunity genes between keratinocytes from psoriasis patients and atopic dermatitis patients. Our findings indicate that cell-autonomous differences exist between cultured keratinocytes of psoriasis and atopic dermatitis patients, which we interpret to be genetically determined. We hypothesize that polymorphisms of innate immunity genes both with signaling and effector functions are coadapted, each with balancing advantages and disadvantages. In the case of psoriasis, high expression levels of antimicrobial proteins genes putatively confer increased protection against microbial infection, but the biological cost could be a beneficial system gone awry, leading to overt inflammatory disease

    Disturbance of Glucose Homeostasis After Pediatric Cardiac Surgery

    Get PDF
    This study aimed to evaluate the time course of perioperative blood glucose levels of children undergoing cardiac surgery for congenital heart disease in relation to endogenous stress hormones, inflammatory mediators, and exogenous factors such as caloric intake and glucocorticoid use. The study prospectively included 49 children undergoing cardiac surgery. Blood glucose levels, hormonal alterations, and inflammatory responses were investigated before and at the end of surgery, then 12 and 24 h afterward. In general, blood glucose levels were highest at the end of surgery. Hyperglycemia, defined as a glucose level higher than 8.3 mmol/l (>150 mg/dl) was present in 52% of the children at the end of surgery. Spontaneous normalization of blood glucose occurred in 94% of the children within 24 h. During surgery, glucocorticoids were administered to 65% of the children, and this was the main factor associated with hyperglycemia at the end of surgery (determined by univariate analysis of variance). Hyperglycemia disappeared spontaneously without insulin therapy after 12–24 h for the majority of the children. Postoperative morbidity was low in the study group, so the presumed positive effects of glucocorticoids seemed to outweigh the adverse effects of iatrogenic hyperglycemia

    Potential Associations between Severity of Infection and the Presence of Virulence-Associated Genes in Clinical Strains of Staphylococcus aureus

    Get PDF
    BACKGROUND: The clinical spectrum of Staphylococcus aureus infection ranges from asymptomatic nasal carriage to osteomyelitis, infective endocarditis (IE) and death. In this study, we evaluate potential association between the presence of specific genes in a collection of prospectively characterized S. aureus clinical isolates and clinical outcome. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred thirty-nine S. aureus isolates (121 methicillin-resistant S. aureus [MRSA] and 118 methicillin-susceptible S. aureus [MSSA]) were screened by array comparative genomic hybridization (aCGH) to identify genes implicated in complicated infections. After adjustment for multiple tests, 226 genes were significantly associated with severity of infection. Of these 226 genes, 185 were not in the SCCmec element. Within the 185 non-SCCmec genes, 171 were less common and 14 more common in the complicated infection group. Among the 41 genes in the SCCmec element, 37 were more common and 4 were less common in the complicated group. A total of 51 of the 2014 sequences evaluated, 14 non-SCCmec and 37 SCCmec, were identified as genes of interest. CONCLUSIONS/SIGNIFICANCE: Of the 171 genes less common in complicated infections, 152 are of unknown function and may contribute to attenuation of virulence. The 14 non-SCCmec genes more common in complicated infections include bacteriophage-encoded genes such as regulatory factors and autolysins with potential roles in tissue adhesion or biofilm formation

    The Progeny of Arabidopsis thaliana Plants Exposed to Salt Exhibit Changes in DNA Methylation, Histone Modifications and Gene Expression

    Get PDF
    Plants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis) plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 5′ and 3′ ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants

    Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching

    Get PDF
    Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms

    Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci

    Get PDF
    Rationale: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. Objective: To identify additional AAA risk loci using data from all available genome-wide association studies (GWAS). Methods and Results: Through a meta-analysis of 6 GWAS datasets and a validation study totalling 10,204 cases and 107,766 controls we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches we observed no new associations between the lead AAA SNPs and coronary artery disease, blood pressure, lipids or diabetes. Network analyses identified ERG, IL6R and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. Conclusions: The 4 new risk loci for AAA appear to be specific for AAA compared with other cardiovascular diseases and related traits suggesting that traditional cardiovascular risk factor management may only have limited value in preventing the progression of aneurysmal disease
    corecore