108 research outputs found

    Maximum power injection acceptance in a residential area

    Get PDF
    The number of installed distributed generation (DG) in residential areas rapidly increases, specifically in the form of photovoltaics (PV), causing some undesired side effects such as voltage rise. Overvoltage can damage critical loads, but is also disadvantageous for the owner because inverters switch off in case of overvoltage, resulting in output loss. Voltage limits are investigated through calculation and simulation of the voltage profile in a typical low voltage (LV) grid by using load data. Insolation data is used for the particular case of PV. This paper presents practical guidelines for the maximum power acceptance in a residential distribution network and the estimation of PV production loss due to overvoltage

    Introducing small storage capacity at residential PV installations to prevent overvoltages

    Get PDF
    Low voltage distribution feeders are designed for unidirectional energy supply from transformer to consumer. However, the implementation of small-scale PV production units on local utilities may result in bidirectional energy flows. The simultaneous power injection at sunny moments may cause a serious voltage rise along the feeder. These overvoltages may not only damage critical loads but also switches PV inverters off causing loss of green energy at the most productive moments. This paper presents a method to limit the voltage rise by introducing small battery buffers at local production sites. A smart inverter decides whether the PV energy is injected in the grid or buffered in the batteries. The relation between battery buffer size and overvoltage reduction is presented for a typical Belgian residential distribution feeder. The influence of the buffer along the feeder is calculated by working with synthetic load profiles and solar irradiation data

    Unimodal head-width distribution of the European eel (Anguilla anguilla L.) from the Zeeschelde does not support disruptive selection

    Get PDF
    Since the early 20th century, European eels (Anguilla anguilla L.) have been dichotomously classified into 'narrow' and 'broad' heads. These morphs are mainly considered the result of a differential food choice, with narrow heads feeding primarily on small/soft prey and broad heads on large/hard prey. Yet, such a classification implies that head-width variation follows a bimodal distribution, leading to the assumption of disruptive selection. We investigated the head morphology of 272 eels, caught over three consecutive years (2015-2017) at a single location in the Zeeschelde (Belgium). Based on our results, BIC favored a unimodal distribution, while AIC provided equal support for a unimodal and a bimodal distribution. Notably, visualization of the distributions revealed a strong overlap between the two normal distributions under the bimodal model, likely explaining the ambiguity under AIC. Consequently, it is more likely that head-width variation followed a unimodal distribution, indicating there are no disruptive selection pressures for bimodality in the Zeeschelde. As such, eels could not be divided in two distinct head-width groups. Instead, their head widths showed a continuum of narrow to broad with a normal distribution. This pattern was consistent across all maturation stages studied here

    Mapping silver eel migration routes in the North Sea

    Get PDF
    Recent developments in tracking technology resulted in the mapping of various marine spawning migration routes of the European eel (Anguilla anguilla). However, migration routes in the North Sea have rarely been studied, despite many large European rivers and hence potential eel growing habitat discharge into the North Sea. In this study, we present the most comprehensive map to date with migration routes by silver European eels in the North Sea and document for the first time successful eel migration through the English Channel. Migration tracks were reconstructed for 42 eels tagged in Belgium and 12 in Germany. Additionally, some eels moved up north to exit the North Sea over the British Isles, confirming the existence of two different routes, even for eels exiting from a single river catchment. Furthermore, we observed a wide range in migration speeds (6.8-45.2 km day(-1)). We hypothesize that these are likely attributed to water currents, with eels migrating through the English Channel being significantly faster than eels migrating northward

    European silver eel (Anguilla anguilla L.) migration behaviour in a highly regulated shipping canal

    No full text
    Among the many man-made structures that facilitate shipping, navigable canals take an important position. These canals may offer energetically favourable migration routes for diadromous fish, but they may also obstruct fish migration, for instance at shipping locks. Because the use of shipping canals by, and their effects on, migrating fish remain unknown, we assessed whether these canals can play a significant role in the migration of the critically endangered European eel. Only one third of 70 acoustically tagged silver eels completed migration through a shipping canal, and did so at a very low pace (average < 0.06 m s(-1)) due to delays at shipping locks and most likely also due to the disruption of water flow. These delays may come at an energetic cost, hampering the chances of successful migration. Knowledge on the impact of shipping canals on diadromous fish is crucial for proper management regulations. For instance, the observation that eels mostly migrated at night and during spring and autumn can support water managers to define adequate measures to improve eel migration in shipping canals

    Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of Mycoplasma species

    Get PDF
    BACKGROUND: Mycoplasmas are present worldwide in a large number of animal hosts. Due to their small genome and parasitic lifestyle, Mycoplasma spp. require complex isolation media. Nevertheless, already over 100 different species have been identified and characterized and their number increases as more hosts are sampled. We studied the applicability of amplified rDNA restriction analysis (ARDRA) for the identification of all 116 acknowledged Mycoplasma species and subspecies. METHODS: Based upon available 16S rDNA sequences, we calculated and compared theoretical ARDRA profiles. To check the validity of these theoretically calculated profiles, we performed ARDRA on 60 strains of 27 different species and subspecies of the genus Mycoplasma. RESULTS: In silico digestion with the restriction endonuclease AluI (AG^CT) was found to be most discriminative and generated from 3 to 13 fragments depending on the Mycoplasma species. Although 73 Mycoplasma species could be differentiated using AluI, other species gave undistinguishable patterns. For these, an additional restriction digestion, typically with BfaI (C^TAG) or HpyF10VI (GCNNNNN^NNGC), was needed for a final identification. All in vitro obtained restriction profiles were in accordance with the calculated fragments based on only one 16S rDNA sequence, except for two isolates of M. columbinum and two isolates of the M. mycoides cluster, for which correct ARDRA profiles were only obtained if the sequences of both rrn operons were taken into account. CONCLUSION: Theoretically, restriction digestion of the amplified rDNA was found to enable differentiation of all described Mycoplasma species and this could be confirmed by application of ARDRA on a total of 27 species and subspecies

    European silver eel (Anguilla anguilla L.) migration behaviour in a highly regulated shipping canal

    Get PDF
    Over the last 40 years, Anguilla species in the northern hemisphere have shown a strong decline in recruitment. Due to a 98% recruitment decline, the European eel is now classified as critically endangered according to the IUCN Red List. To aid conservation and recovery of European eel populations, the European Union recently adopted a Council Regulation which imposes a management system that ensures 40% escapement of the spawning stock biomass, defined as the best estimate of the theoretical escapement rate if the stock were completely free of anthropogenic influences. Various causes likely contribute to the eel decline (e.g. pollution, human-introduced parasites, changes in ocean climate, habitat deterioration…), but habitat fragmentation by migration barriers that prevent the movement of silver eels between freshwater and the sea is probably one of the most important bottlenecks. During the last decades, a substantial number of canals has been developed, creating new habitat for eels. However, eel migration and potential obstacles in these systems are still underexplored. In this study, we tracked 131 European eels (Anguilla anguilla L.) from October 2014 till March 2017 in the Belgian Albert Canal with acoustic telemetry. The 130-km long canal is on average 86 m wide, 5 m deep and functions as a shipping route between the rivers Schelde and Meuse. The canal has a highly regulated water flow and six shipping locks to overcome the 56-m fall, which may have a negative impact on silver eel escapement. Indeed, we found significant delays (i.e. periods with a significantly prolonged residence time) and a ca 50% lower swimming speed near shipping locks compared to riverine conditions. Depending on nothing but their accumulated fat for migration to their spawning grounds, delays can seriously impact eels by wasting precious energy resources needed for a successful trans-Atlantic migration

    Emergency repair of inguinal hernia in the premature infant is associated with high direct medical costs

    Get PDF
    _Purpose:_ Inguinal hernia repair is frequently performed in premature infants. Evidence on optimal management and timing of repair, as well as related medical costs is still lacking. The objective of this study was to determine the direct medical costs of inguinal hernia, distinguishing between premature infants who had to undergo an emergency procedure and those who underwent elective inguinal hernia repair. _Methods:_ This cohort study based on medical records concerned premature infants with inguinal hernia who underwent surgical repair within 3 months after birth in a tertiary academic children’s hospital between January 2010 and December 2013. Two groups were distinguished: patients with incarcerated inguinal hernia requiring emergency repair and patients who underwent elective repair. Real medical costs were calculated by multiplying the volumes of healthcare use with corresponding unit prices. Nonparametric bootstrap techniques were used to derive a 95 % confidence interval (CI) for the difference in mean costs. _Results:_ A total of 132 premature infants were included in the analysis. Emergency surgery was performed in 29 %. Costs of hospitalization comprised 65 % of all costs. The total direct medical costs amounted to €7418 per premature infant in the emergency repair group versus €4693 in the elective repair group. Multivariate analysis showed a difference in costs of €1183 (95 % CI −1196; 3044) in favor of elective repair after correction for potential risk factors. _Conclusion:_ Emergency repair of inguinal hernia in premature infants is more expensive than elective repair, even after correction for multiple confounders. This deserves to b
    • …
    corecore