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Abstract. The number of installed distributed generation 
(DG) in residential areas rapidly increases, specifically in the 
form of photovoltaics (PV), causing some undesired side effects 
such as voltage rise. Overvoltage can damage critical loads, but 
is also disadvantageous for the owner because inverters switch 
off in case of overvoltage, resulting in output loss. Voltage 
limits are investigated through calculation and simulation of the 
voltage profile in a typical low voltage (LV) grid by using load 
data. Insolation data is used for the particular case of PV.  This 
paper presents practical guidelines for the maximum power 
acceptance in a residential distribution network and the 
estimation of PV production loss due to overvoltage. 
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1. Introduction 
 
In recent years the number of photovoltaic (PV) 
installations in residential areas is increasing rapidly due 
to environmental awareness, increasing energy prices and 
incentives from the government. Distributed generation 
(DG) causes some challenges for the distribution network 
operator such as reverse power flow, increased short-
circuit power, unintentional islanding, selectivity of 
protections, stability problems and power quality issues 
like harmonic distortion and voltage rise [1]-[2]. 
Overvoltage can damage critical loads, but also the PV 
owner can suffer because inverters switch off in case of 
overvoltage, resulting in PV production loss. 
 
Unlike the efforts of the Belgian national and local 
government for the fast and massive implementation of 
renewable energy sources in general, there are little 
regulatory measures for connecting distributed generation 
with a rated power of less than 10 kW [3]. This has led to 
a situation where the responsible grid operator no longer 
has an accurate overview of the number, location and 
amount of DG. The problems are dominant for residential 
grids.  

 
This paper gives a guideline for the determination of the 
maximum power that may be injected in a distribution 
network without violating voltage limits, by using 
equivalent power injection calculations. Moreover the 
paper gives a guideline to choose the peak power of a PV 
installation that will be placed in an existing network, 
taking into account the location in the network, load and 
PV production profiles as well as PV production losses 
due to overvoltage. Simulations and calculations are 
performed for a Belgian residential area. 
 
2. Residential area 
 
For the simulations a hypothetical but representative 
Belgian residential area is used. The Belgian network 
contains two specific types of residential LV grids, 
namely the compact urban grid and the rural grid. The 
rural grids are more sensitive to the discussed problem 
since these grids are older, the connection points are 
more dispersed and the amount of installed power is 
usually higher. 
 
The European voltage norm EN50160 states that the 10 
minute average RMS voltage at the point of common 
coupling (PCC) must lay within the ±10% Unom limits for 
95% of the time, with Unom = 230 VRMS.[4] In order to 
maintain the voltage at the end of the feeder inside these 
boundaries the transformer secondary voltage is set at 
241 VRMS.   
 
The generalised network consists of a 630 kVA 
transformer and feeders EAXVB 4x150 mm2 with 
maximum length of 975 m. Houses are equally divided 
over the three phases. The distance between the houses is 
25 m. Simulations confirm that the influence of the grid 
impedance, varying from 180 MVA to 500 MVA, and of 
the transformer impedance is marginal in relation to the 
feeder impedance.  
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3. Equivalent power injection 
 
A. Influence of point of injection on voltage profile 
  
Figure 1 shows the voltage profile along a feeder with 1 
power injection (10 kW) and no load as a function of the 
injection location. 
 

 
 

Fig. 1.  Influence of point of injection on voltage profile 
 
It can be seen that the voltage at the point of injection 
rises when the distance between injection point and 
transformer increases. The relationship is not exactly 
linear because for constant power injections, currents are 
smaller at higher voltages. However, voltages calculated 
with a constant current approximation deviate only 
slightly from the simulated values (0.5% deviation for the 
voltage at the end of the feeder). 
 
In a three phase system there will also be a voltage drop 
in the neutral conductor. Due to the shifting of the neutral 
voltage at PCC, all three phase-neutral voltages will shift. 
Dependent on the voltage phase and the L/R ratio of the 
feeder, the other voltages will shift and result in a higher 
or lower phase voltage. Simulation results verify that the 
voltage rise on the injected phase is the limiting factor for 
the maximum power acceptance.   
 
For a single phase injection and equal sections of phase 
and neutral conductors, the voltage at the injection point 
is given by: 
 

 l
U

P
.ZUU

IP
sIP 2+=   (1) 

 
where UIP and Us are the voltages [V] at injection point 
and transformer respectively, Z the cable impedance 
[Ω/m], P the injected power [W] and l [m] the distance 
between injection point and transformer.  
 
 
B. Maximum power injection as a function of distance  
 
Voltage-distance curves can be set up for different values 
of power injection. Alternatively, for a given maximum 
voltage Umax, the maximum power injection at a certain 
distance can be determined by: 
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Figure 2 shows approximate calculation results obtained 
by using (3) and values from table I. Equation (3) is 
derived by using the voltage drop expression from the 
standard NF C15-100 (4) and by assuming a constant 
current. 
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where ∆U is the cable voltage drop, b a constant (1 or 2, 
for three and single phase circuits respectively), ρ the 
resistivity and λ the reactance of the conductors, L the 
length and S the section of the cable, I the current and φ 
the phase shift between current and voltage. 
 
The figure also presents simulation results for 
Umax = U110%, Umax = U108%, and Umax = U106%, which is 
respectively 110%, 108% and 106% of the nominal 
voltage of 230 VRMS according to the EN50160 standard.  
 
Deviations between calculated and simulated values are 
small for higher distances. For locations near the 
transformer the calculated maximum power injection is 
less than the simulated value. This is due to the 
simplified scalar approach, instead of the correct 
vectorial computation.  In general it can be concluded 
that the calculated power can be injected without 
violating the voltage limit. 
 

 
Table I. – Electric momentum for different allowed voltages 

 
ALLOWED  
VOLTAGE 

ELECTRIC 
MOMENTUM 

Umax = U110% = 253,0 V P.l = 6690 kWm 
Umax = U108% = 248,4 V P.l = 4056 kWm 
Umax = U106% = 243,8 V P.l = 1506 kWm 

 

 
 
Fig. 2.  Maximum power injection as a function of distance for 

different allowed voltages: simulations and calculations 
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C. Equivalent power injection  
 
Equation (3) means that the electric momentum is 
constant for a given grid and maximum voltage. By this 
electric momentum a certain injected power at a certain 
distance can be converted to an equivalent power 
injection at a specific distance.  
This way all power injections along a feeder can be 
converted to a single equivalent power injection at the 
end of the feeder (5). 
 

 
L

.lP
P ii

e
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where Pe is the equivalent power injection, i the location 
index, Pi the power injection at location i, li the distance 
between location i and the transformer, L the total feeder 
length. 
 
The equivalent power injection approach can be 
generically used for all kinds of situations (e.g. other 
cable sections, different sections between phase and 
neutral conductors, three phase injections). Table II gives 
some electric momentum values for other configurations. 
 

Table II. – Electric momentum for different configurations 
 

CABLE TYPE POWER 
INJECTION 

ELECTRIC 
MOMENTUM 
FOR Umax = 253 V 
(per injected phase) 

EAXVB 4x150 Single phase Pe.L = 6690 kWm 
BXB 3x95+54 Single phase Pe.L = 2700 kWm 
EAXVB 4x150 Three phase Pe.L = 7725 kWm 
BXB 3x95+54 Three phase Pe.L = 4272 kWm 

 
 

4. PV production losses 
 
A. Time dependent profiles 
 
The previous reasoning is valid for all kinds of DG. In 
following the specific situation for PV production is 
simulated. 
 
The power consumption distribution is obtained from the 
Flemish market regulator VREG [5]. The power 
consumption is given on a 15 minute basis, but is 
recalculated to a 10 minute basis for the simulations. 
 

 
Fig. 3.  Residential power consumption during a year, 

normalized to 1000 p.u. for the yearly total [5]. 
 
In this paper the assumption is made that the PV 
production is proportional to the energy density from the 
sunlight. A standard sunlight year is used for the energy 
density distribution [7].  
 
The production from a Flemish PV installation of 1 kWp 
is, according to a general rule of thumb, set equal to a 
850 kWh on annual basis. From the energy density on a 
half hour basis, a PV production is derived on a 10 
minute basis. 
  

 
Fig. 4.  PV production in a Belgian area during a year, 

normalized to 1 p.u. peak [7]. 
 
In order to simulate the network voltages over one year 
along the feeder, the time dependent load and PV 
production profiles (fig.3, fig.4) are combined. Since 
consumption and production data were recalculated to 10 
minute values, the results are 10 minute average voltages 
in accordance with EN50160. In this situation the 
assumption is made that inverters will not switch off due 
to overvoltage. As a result 210240 voltage values are 
calculated (8760 h/y * 6 times 10 min/h). 
 



 
(a) no load 

 
(b) all phases loaded by 12 x 3 kWp profiles 

Fig. 5.  Voltage variation at the end of the feeder when 10 kWp 
PV is installed at the end of the feeder on phase A. 

 
 
 
B. Probability of voltage limit exceeding 
 
The 210240 computed samples are used to determine the 
probability function of the voltage. Figure 6 shows the 
yearly percentage the stated voltage limit is exceeded for 
different PV peak power and the cases with and without 
load.  
 

 

(a) no load 

 

(b) all phases loaded by 12x3kWp profiles 

Fig. 6.  Yearly percentage of voltage limit exceeding for 
different PV peak power 

 
 
From these results, the yearly percentage of overvoltage 
(voltage > 253 VRMS) can be plotted against the installed 
PV peak power (fig.7).   
 

  
 (a) linear  (b) quadratic 

 
Fig. 7.  Yearly percentage of overvoltage vs. PV peak power in 

case of no load and all phases loaded by 12 x 3 kWp profiles 
 
The percentage of overvoltage for an arbitrary loading (0-
100% of houses is consuming power) lies between 
minimum and maximum values, which can be linearly 
approximated by (6) and (7) respectively: 
 

 87.576.0min,253 −=> xY V  (6) 

 49.586.0max,253 −=> xY V  (7) 

 
where Y>253V,min and Y>253V,max are the minimum and 
maximum values of the yearly overvoltage percentage 
respectively, and x = PPV,peak [kW] the installed PV peak 
power at the end of the feeder. 
It is clear that the situation without load is the worst-case 
scenario, giving maximum values. 
A more accurate estimate is obtained by second order 
expansions, which take into account the saturating effect 
for higher power amounts: 
 

 45.10499.10169.0 2
min,253 −+−=> xxY V  (8) 

 83.10328.10139.0 2
max,253 −+−=> xxY V  (9) 
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In case the real PV injection is not at the end of the 
feeder, expression (5) can be used to calculate the 
equivalent injection. 
 
 
C. PV production losses 
 
In case of overvoltage, inverters must switch off in 
accordance with the Belgian C10-11 regulations [3]. The 
switching will result in voltage oscillations and 
production losses.  From the simulation results the yearly 
production loss in kWh can be evaluated (table III, fig. 
8). Similarly minimum and maximum values are found 
for the load and no load cases respectively (fig. 9, table 
IV). 
 
Table III. – Yearly production and loss due to overvoltage vs. 
PV peak power in case of single phase injection at the end of 

the feeder and all phases loaded by 12 x 3 kWp profiles 
 
INSTALLED 6 8 10 15 20 30 kWp 

TOTAL 5100 6800 8500 12750 17000 25500 kWh/y 

LOSS 0 2,08 692,2 4371 8837 17926 kWh/y 

% LOSS 0 0,03 8,14 34,28 51,98 70,30 % 

 

 
Fig. 8.  Yearly production and loss due to overvoltage vs. PV 
peak power in case of single phase injection at the end of the 

feeder and all phases loaded by 12 x 3 kWp profiles 
 
 

 
Fig. 9.  Yearly production loss due to overvoltage vs. PV peak 

power in case of load and no load conditions 
 
 
 
 

Table IV. – Yearly production and loss due to overvoltage vs. 
PV peak power in case of no load 

 
INSTALLED 6 8 10 15 20 30 kWp 

TOTAL 5100 6800 8500 12750 17000 25500 kWh/y 

LOSS 0 292,6 1512 5714 10202 19510 kWh/y 

% LOSS 0 4,30 17,79 44,81 60,01 76,51 % 

 
 
5. Further research 
 
The exponential growth of DG is creating the voltage 
problem as stated above. The same analysis will be 
performed for Small Wind Turbines. Further research 
will be done to minimize these problems, such as limiting 
the injectable current, with local storage or limiting the 
MPPT of the inverter, and the implementation of these 
algorithms in so called smart inverters.  Results can also 
be implemented in economic calculations to determine 
more realistic payback times [8]. 
 
 
6. Conclusions 
 
This paper gives a general approach for the determination 
of the maximum power acceptance in residential areas. 
Using the equivalent power injection approach, the 
available power injection capacity or the possible 
violation of voltage limits can be quickly estimated. 
Guidelines are proposed to calculate PV production 
losses due to overvoltage. This guideline can be used to 
choose the peak power of a PV installation. Simulations 
and calculations are performed for a Belgian residential 
area. However the methodology can be generally applied. 
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