71 research outputs found

    Flow-to-fracture transition in a volcanic mush plug may govern normal eruptions at Stromboli

    Get PDF
    Stromboli is a model volcano for studying eruptions driven by degassing. The current paradigm posits that Strombolian eruptions represent the bursting of gas slugs ascending through melt‐filled conduits, but petrological observations show that magma at shallow depth is crystalline enough to form a three‐phase plug consisting of crystals, bubbles, and melt. We combine a 1‐D model of gas flushing a crystalline mush with a 3‐D stress model. Our results suggest that localized gas segregation establishes hot conduits of mobile magma within a stagnant plug. The plug is prone to tensile failure controlled by gas overpressure and tectonic stress, with failure most likely beneath the observed vent locations. We hence argue that Strombolian eruptions are related to plug failure rather than flow. Our proposed three‐phase model of the shallow plumbing system may provide a promising framework for integrating geophysical, petrological, and morphological observations at Stromboli and in open‐system volcanism more generally

    Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile

    Get PDF
    The characteristics of the open vent activity of Villarrica volcano, Chile, were studied in detail by integrating visual observations of the lava lake, analysis of the seismic tremor, and measurements of SO2 flux. The outgassing activity comprises a persistent gas plume emission from the bottom of the crater as well as frequent explosive events. Three main styles of bubble bursting were identified at the surface of the active lava lake: seething magma, small short-lived lava fountains, and Strombolian explosions. Seething magma consists of continual burst of relatively small bubbles (a few meters in diameter) with varying strength over the entire surface of the lava lake. Small lava fountains, seen as a vigorous extension of seething magma, commonly have durations of 20–120 s and reach 10–40 m high above the lava lake. Correlations between seismicity and visual observations indicate that the seismic tremor is mostly caused by the explosive outgassing activity. Furthermore, for different periods between 2000 and 2006, during which the activity remained comparable, the real-time seismic amplitude measurement system (RSAM) and SO2 emission rates show a very good correlation. Higher SO2 emissions appeared to be related to higher levels of the lava lake, stronger bubble bursting activity, and changes in the morphology and texture of the crater floor. Background (low) levels of activity correspond to a lava lake located >80 m below the crater rim, small and/or blocky morphology of the roof, seismic amplitude (RSAM) lower than 25 units, few volcano-tectonic earthquakes, and daily averages of SO2 emissions lower than 600 Mg/d

    New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua

    Get PDF
    The Fontana Lapilli deposit was erupted in the late Pleistocene from a vent, or multiple vents, located near Masaya volcano (Nicaragua) and is the product of one of the largest basaltic Plinian eruptions studied so far. This eruption evolved from an initial sequence of fluctuating fountain-like events and moderately explosive pulses to a sustained Plinian episode depositing fall beds of highly vesicular basaltic-andesite scoria (SiO2 > 53 wt%). Samples show unimodal grain size distribution and a moderate sorting that are uniform in time. The juvenile component predominates (> 96 wt%) and consists of vesicular clasts with both sub-angular and fluidal, elongated shapes. We obtain a maximum plume height of 32 km and an associated mass eruption rate of 1.4 × 108 kg s−1 for the Plinian phase. Estimates of erupted volume are strongly sensitive to the technique used for the calculation and to the distribution of field data. Our best estimate for the erupted volume of the majority of the climactic Plinian phase is between 2.9 and 3.8 km3 and was obtained by applying a power-law fitting technique with different integration limits. The estimated eruption duration varies between 4 and 6 h. Marine-core data confirm that the tephra thinning is better fitted by a power-law than by an exponential trend

    Assessing eruption column height in ancient flood basalt eruptions

    Get PDF
    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12–16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13–17 km for source widths of between 4–16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∌45°N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10–15 year duration, the ∌180km of known Roza fissure length could have supported ∌36 explosive events/phases, each with a duration of 3–4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∌66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced climate on time scales of decades to centuries but the location (i.e., latitude) of the province and relevant paleoclimate is important and must be considered

    Effusive and explosive volcanism on the ultraslow-spreading Gakkel Ridge, 85°E

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q10005, doi:10.1029/2012GC004187.We use high-definition seafloor digital imagery and multibeam bathymetric data acquired during the 2007 Arctic Gakkel Vents Expedition (AGAVE) to evaluate the volcanic characteristics of the 85°E segment of the ultraslow spreading Gakkel Ridge (9 mm yr−1 full rate). Our seafloor imagery reveals that the axial valley is covered by numerous, small-volume (order ~1000 m3) lava flows displaying a range of ages and morphologies as well as unconsolidated volcaniclastic deposits with thicknesses up to 10 cm. The valley floor contains two prominent volcanic lineaments made up of axis-parallel ridges and small, cratered volcanic cones. The lava flows appear to have erupted from a number of distinct source vents within the ~12–15 km-wide axial valley. Only a few of these flows are fresh enough to have potentially erupted during the 1999 seismic swarm at this site, and these are associated with the Oden and Loke volcanic cones. We model the widespread volcaniclastic deposits we observed on the seafloor as having been generated by the explosive discharge of CO2 that accumulated in (possibly deep) crustal melt reservoirs. The energy released during explosive discharge, combined with the buoyant rise of hot fluid, lofted fragmented clasts of rapidly cooling magma into the water column, and they subsequently settled onto the seafloor as fall deposits surrounding the source vent.We gratefully acknowledge the financial support of the National Aeronautics and Space Administration, the National Science Foundation (N.S.F.), the International Polar Year 2007–2008, and Woods Hole Oceanographic Institution; and the graduate support provided by N.S.F., the NDSEG Fellowship, and WHOI Deep Ocean Exploration Institute.2013-04-0

    Open-vent volcanoes: a preface to the special issue

    No full text
    International audienceCheck the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown. Check the questions that may have arisen during copy editing and insert your answers/ corrections. Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript

    An interpretative view of open-vent volcanoes

    No full text
    International audienceOpen-vent volcanoes are special systems where the dynamics of sustained magmatic processes can be thoroughly investigated and where new monitoring tools can be tested and applied. However, various aspects remain puzzling at open-vent volcanoes for which forecasting their behaviour can be an important challenge. Recent papers highlight the very rapid improvements in spaceborne instruments, data acquisition techniques, data treatment and modelling over the last decade and illustrate the fundamental contribution of long time-series data, either discontinuous or continuous, and the development of multiparameter studies. Here we provide an interpretative overview of the main characteristics of open-vent volcanoes on the basis of selected examples chosen to be representative of the diversity of their magma composition, their eruptive activity and their geodynamic context. We choose typical open-vent volcanoes (Stromboli, Yasur and Erebus), some of them hosting a lava lake (Erta `Ale, Nyiragongo, Villarrica, Ambrym and Masaya), to those with vigourous activity, which are associated to a long-lasting eruption (Arenal, Fuego, Popocatépetl, Santiaguito). We briefly review their surface activity and report the values of SO2 flux and the derived magma supply rate with emphasis on the key results found on their behaviour. We show the key role of the magma viscosity and its implication on the degassing. We present the current models used to explain how an open-vent volcano could be maintained, such as by the simultaneous rise and fall of a degassing and degassed magma (bi-directional flow models) and the few thermal models at lava lakes and in the conduit. Finally, we discuss the sulphur evolution for three nearby volcanoes at the triple junction in Central America (Pacaya, Fuego, Santiaguito)

    Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska - 2. Precursor to the Subplinian phase

    No full text
    International audienceThe 1999 eruption of Shishaldin volcano (Alaska, USA) displayed both Strombolian and Subplinian basaltic activity. The Subplinian phase was preceded by a signal of low amplitude and constant frequency (≈2 Hz) lasting 13 h. This "humming signal" is interpreted as the coalescence of the very shallow part of a foam building up in the conduit, which produces large gas bubbles before bursting. The acoustic waveform of the hum event is modelled by a Helmholtz resonator: gas is trapped into a rigid cavity and can only escape through a tiny upper hole producing sound waves. At Shishaldin, the radius of the hole (≈5 m) is close to that of the conduit (≈6 m), the cavity has a length of ≈60 m, and gas presents only a small overpressure between (≈1.2×10 -3 and 4.5×10 -3 MPa). Such an overpressure is obtained by the partial coalescence of a foam formed by bubbles with a diameter from ≈2.3 mm at the beginning of the episode towards ≈0.64 mm very close to the end of the phase. The intermittency between hum events is explained by the ripening of the foam induced by the H 2O diffusion through the liquid films. The two extreme values, from 600 to 10 s, correspond to a bubble diameter from 2.2 to 0.3 mm at the beginning and end of the pre-Subplinian phase, respectively. The extremely good agreement between two independent estimates of bubble diameters in the shallow foam reinforces the validity of such an interpretation. The total gas volume lost at the surface during the humming events is at most 5.9×10 6 m 3. At the very end of the pre-Subplinian phase, there is a single large bubble with an overpressure of ≈0.42 MPa. The large overpressure suggests that it comes from significant depth, unlike other bubbles in the pre-Subplinian phase. This deep bubble may be responsible for the entire foam collapse, resulting in the Subplinian phase
    • 

    corecore