35 research outputs found

    Interactions between downslope flows and a developing cold-air pool

    Get PDF
    A numerical model has been used to characterize the development of a region of enhanced cooling in an alpine valley with a width of order (Formula presented.) km, under decoupled stable conditions. The region of enhanced cooling develops largely as a region of relatively dry air which partitions the valley atmosphere dynamics into two volumes, with airflow partially trapped within the valley by a developing elevated inversion. Complex interactions between the region of enhanced cooling and the downslope flows are quantified. The cooling within the region of enhanced cooling and the elevated inversion is almost equally partitioned between radiative and dynamic effects. By the end of the simulation, the different valley atmospheric regions approach a state of thermal equilibrium with one another, though this cannot be said of the valley atmosphere and its external environment.Peer reviewe

    Pollutant dispersion in a developing valley cold-air pool

    Get PDF
    Pollutants are trapped and accumulate within cold-air pools, thereby affecting air quality. A numerical model is used to quantify the role of cold-air-pooling processes in the dispersion of air pollution in a developing cold-air pool within an alpine valley under decoupled stable conditions. Results indicate that the negatively buoyant downslope flows transport and mix pollutants into the valley to depths that depend on the temperature deficit of the flow and the ambient temperature structure inside the valley. Along the slopes, pollutants are generally entrained above the cold-air pool and detrained within the cold-air pool, largely above the ground-based inversion layer. The ability of the cold-air pool to dilute pollutants is quantified. The analysis shows that the downslope flows fill the valley with air from above, which is then largely trapped within the cold-air pool, and that dilution depends on where the pollutants are emitted with respect to the positions of the top of the ground-based inversion layer and cold-air pool, and on the slope wind speeds. Over the lower part of the slopes, the cold-air-pool-averaged concentrations are proportional to the slope wind speeds where the pollutants are emitted, and diminish as the cold-air pool deepens. Pollutants emitted within the ground-based inversion layer are largely trapped there. Pollutants emitted farther up the slopes detrain within the cold-air pool above the ground-based inversion layer, although some fraction, increasing with distance from the top of the slopes, penetrates into the ground-based inversion layer.Peer reviewe

    The Community Foehn Classification Experiment

    Get PDF
    Strong winds crossing elevated terrain and descending to its lee occur over mountainous areas worldwide. Winds fulfilling these two criteria are called “foehn” in this paper although different names exist depending on region, sign of temperature change at onset, and depth of overflowing layer. They affect local weather and climate and impact society. Classification is difficult because other wind systems might be superimposed on them or share some characteristics. Additionally, no unanimously agreed-upon name, definition nor indications for such winds exist. The most trusted classifications have been performed by human experts. A classification experiment for different foehn locations in the Alps and different classifier groups addressed hitherto unanswered questions about the uncertainty of these classifications, their reproducibility and dependence on the level of expertise. One group consisted of mountain meteorology experts, the other two of Masters degree students who had taken mountain meteorology courses, and a further two of objective algorithms. Sixty periods of 48 hours were classified for foehn/no foehn at five Alpine foehn locations. The intra-human-classifier detection varies by about 10 percentage points (interquartile range). Experts and students are nearly indistinguishable. The algorithms are in the range of human classifications. One difficult case appeared twice in order to examine reproducibility of classified foehn duration, which turned out to be 50% or less. The classification dataset can now serve as a testbed for automatic classification algorithms, which - if successful - eliminate the drawbacks of manual classifications: lack of scalability and reproducibility

    Interactions between the night time valley-wind system and a developing cold-air pool

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Boundary-Layer Meteorology following peer review. The version of record [Arduini, G., Staquet, C & Chemel, C., ‘Interactions between the night time valley-wind system and a developing cold-air pool’, Boundary-Layer Meteorol (2016) 161:1 (49-72), first published online June 2, 2016, is available at Springer online at doi: 10.1007/s10546-016-0155-8The Weather Research and Forecast (WRF) numerical model is used to characterize the influence of a thermally-driven down-valley flow on a developing cold-air pool in an idealized alpine valley decoupled from the atmosphere above. Results for a three-dimensional (3D) valley, which allows for the formation of a down-valley flow, and for a two-dimensional (2D) valley, where the formation of a down-valley flow is inhibited, are analyzed and compared. A key result is that advection leads to a net cooling in the 2D valley and to a warming in the 3D valley, once the down-valley flow is fully developed. This difference stems from the suppression of the slope-flow induced upward motions over the valley centre in the 3D valley. As a result, the downslope flows develop a cross-valley circulation within the cold-air pool, the growth of the cold-air pool is reduced and the valley atmosphere is generally warmer than in the 2D valley. A quasi-steady state is reached for which the divergence of the down-valley flow along the valley is balanced by the convergence of the downslope flows at the top of the cold-air pool, with no net contribution of subsiding motions far from the slope layer. More precisely, the inflow of air at the top of the cold-air pool is found to be driven by an interplay between the return flow from the plain region and subsidence over the plateaux. Finally, the mechanisms that control the structure of the cold-air pool and its evolution are found to be independent of the valley length as soon as the quasi-steady state is reached and the down-valley flow is fully developed.Peer reviewedFinal Accepted Versio

    Meeting the International Health Regulations (2005) surveillance core capacity requirements at the subnational level in Europe: the added value of syndromic surveillance

    Get PDF
    BACKGROUND: The revised World Health Organization's International Health Regulations (2005) request a timely and all-hazard approach towards surveillance, especially at the subnational level. We discuss three questions of syndromic surveillance application in the European context for assessing public health emergencies of international concern: (i) can syndromic surveillance support countries, especially the subnational level, to meet the International Health Regulations (2005) core surveillance capacity requirements, (ii) are European syndromic surveillance systems comparable to enable cross-border surveillance, and (iii) at which administrative level should syndromic surveillance best be applied? DISCUSSION: Despite the ongoing criticism on the usefulness of syndromic surveillance which is related to its clinically nonspecific output, we demonstrate that it was a suitable supplement for timely assessment of the impact of three different public health emergencies affecting Europe. Subnational syndromic surveillance analysis in some cases proved to be of advantage for detecting an event earlier compared to national level analysis. However, in many cases, syndromic surveillance did not detect local events with only a small number of cases. The European Commission envisions comparability of surveillance output to enable cross-border surveillance. Evaluated against European infectious disease case definitions, syndromic surveillance can contribute to identify cases that might fulfil the clinical case definition but the approach is too unspecific to comply to complete clinical definitions. Syndromic surveillance results still seem feasible for comparable cross-border surveillance as similarly defined syndromes are analysed. We suggest a new model of implementing syndromic surveillance at the subnational level. In this model, syndromic surveillance systems are fine-tuned to their local context and integrated into the existing subnational surveillance and reporting structure. By enhancing population coverage, events covering several jurisdictions can be identified at higher levels. However, the setup of decentralised and locally adjusted syndromic surveillance systems is more complex compared to the setup of one national or local system. SUMMARY: We conclude that syndromic surveillance if implemented with large population coverage at the subnational level can help detect and assess the local and regional effect of different types of public health emergencies in a timely manner as required by the International Health Regulations (2005)

    A multimethodological approach to study the spatial distribution of air pollution in an Alpine valley during wintertime

    Get PDF
    In order to investigate the spatial distribution of air pollutants in the Inn valley (Tyrol, Austria) during wintertime, a joint field campaign of the three research projects ALPNAP (Monitoring and Minimisation of Traffic-Induced Noise and Air Pollution Along Major Alpine Transport Routes), INNAP (Boundary Layer Structure in the Inn Valley during high Air Pollution) and INNOX (NOx-structure in the Inn Valley during High Air Pollution) was carried out in January/February 2006. In addition to continuous ground based measurements, vertical profiles of various air pollutants and meteorological parameters were obtained on six selected days. For in-situ investigations, a tethered balloon was used to analyse the lowest atmospheric layers, 0�500 m above the valley bottom (a.v.b.), and a research aircraft sampled at 150�2200 m a.v.b. An aircraft equipped with an aerosol backscatter lidar performed nadir measurements at 3000 m a.v.b. Combined results from a typical day show a strongly polluted layer up to about 125 m a.v.b. in the morning. Around midday concentrations on the valley floor decrease indicating some vertical air exchange despite thermally stable conditions. Strong vertical and horizontal gradients with enhanced pollution levels along the sunny side of the valley up to 1300 m a.v.b. were observed in the afternoon. This vertical mixing due to thermally or dynamically driven slope winds reduces the concentration of air pollutants at the bottom of the valley and causes the formation of elevated pollution layers
    corecore