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University of Zagreb, Zagreb, Croatia27

Johannes Vergeiner28

Central Institution for Meteorology and Geodynamics, Innsbruck, Austria29

Simon Vosper30

Met Office, Exter, UK31

Günther Zängl32

Deutscher Wetterdienst, Offenbach, Germany33

∗Corresponding author address: Georg J. Mayr, Department of Atmospheric and Cryospheric Sci-

ences, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria.

34

35

E-mail: georg.mayr@uibk.ac.at36

2



†Current affiliation: UBIMET, Vienna, Austria37

3



ABSTRACT
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Strong winds crossing elevated terrain and descending to its lee occur over

mountainous areas worldwide. Winds fulfilling these two criteria are called

“foehn” in this paper although different names exist depending on region,

sign of temperature change at onset, and depth of overflowing layer. They

affect local weather and climate and impact society. Classification is difficult

because other wind systems might be superimposed on them or share some

characteristics. Additionally, no unanimously agreed-upon name, definition

nor indications for such winds exist. The most trusted classifications have

been performed by human experts. A classification experiment for different

foehn locations in the Alps and different classifier groups addressed hitherto

unanswered questions about the uncertainty of these classifications, their re-

producibility and dependence on the level of expertise. One group consisted

of mountain meteorology experts, the other two of Masters degree students

who had taken mountain meteorology courses, and a further two of objective

algorithms. Sixty periods of 48 hours were classified for foehn/no foehn at

five Alpine foehn locations. The intra-human-classifier detection varies by

about 10 percentage points (interquartile range). Experts and students are

nearly indistinguishable. The algorithms are in the range of human classifica-

tions. One difficult case appeared twice in order to examine reproducibility of

classified foehn duration, which turned out to be 50% or less. The classifica-

tion dataset can now serve as a testbed for automatic classification algorithms,

which - if successful - eliminate the drawbacks of manual classifications: lack

of scalability and reproducibility.
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1. Introduction61

Many processes and phenomena in the atmosphere need to be diagnosed – from low pressure62

systems with fronts in midlatitudes and hurricanes in the tropics, to fog or lightning. Some diag-63

noses are easy to make. Hearing thunder identifies lightning, and not being able to see a building64

less than 1 km away during daytime indicates fog. These diagnoses can even be automated with65

suitable instrumentation – to identify lightning from its signature in the electromagnetic waves it66

emits and fog from scattering of a light source. Some processes and phenomena, however, are67

much harder to classify, often because not enough information is available or the process itself68

is insufficiently understood. Lately, methods from statistics and machine learning in combination69

with a huge increase in computing power have been harnessed with ever increasing success to70

tackle more and more difficult classification tasks, earning them the label “artificial intelligence”.71

Arguably the largest progress has been made in classifying images, from spotting a dog on a photo72

to identifying a particular person. The underlying neural-network algorithms, however, typically73

need thousands or even hundreds of thousands of pre-classified images provided by humans in or-74

der to “learn”. Such “supervised” learning is much easier than “unsupervised learning” for which75

no “truth” exists. This is the area where classifications by human experts are still the gold stan-76

dard, albeit with several drawbacks: lack of scalability and reproducibility, and unknown error77

rates. Because only few people have the required expertise to perform a classification, which takes78

a substantial amount of time, the classification task cannot be extended to an arbitrarily large num-79

ber of instances, and comparison of classifications among different experts or by the same expert80

performed at different times are at best extremely rare.81

A group of experts collaborated recently on such a task to remedy two of the classification82

drawbacks by providing estimates of classification uncertainty and reproducibility, and a database83
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against which existing and future algorithms can be tested. The classification task identified peri-84

ods of downslope windstorms in time series of weather station measurements.85

Such windstorms result from winds that cross topographic obstacles and accelerate as they de-86

scend to their lee. They occur over mountainous locations worldwide and are known by differ-87

ent names, which are sometimes also used to refer to an additional characteristic. Because no88

all-encompassing name exists this article will use “foehn” for simplicity without implying a tem-89

perature increase during its onset, or a specific region. Foehn affects local weather and climate90

and impacts agriculture (growing conditions due to temperature and humidity changes; top soil91

erosion), tourism (reliable spots for wind and kite surfing), artificial snow making (change of wet-92

bulb temperatures), air pollution (trapping pollutants in cold pools underneath the foehn layer, or93

sweeping them away in case of break-through), human health (reduction of air pollution), forest94

fires (intensifying them to uncontrollable extents), ground traffic (toppling trucks; snow or sand95

drifts; blasting of vehicles with sand and small rocks), and air traffic (closure of runways when96

crosswinds are too high). The increasing density of automatic weather stations allows the obser-97

vation of such winds at progressively more locations. Classification, however, is difficult because98

other wind systems such as radiatively-driven downslope/downvalley winds might be superim-99

posed on foehn, share some of its characteristics, or because not enough information is available.100

The difficulty is compounded because no unanimously agreed-upon definition of foehn and its101

indications exist, foehn occurs in a variety of synoptic-scale and mesoscale settings, and different102

names are being used depending on region, the sign of temperature change at its onset, and its103

depth.104
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2. Classification task105

Nevertheless, two unanimously agreed-upon characteristics are that air crosses an obstacle and106

that it descends and accelerates on the downwind side causing strong winds. A fairly simple107

conceptual model of the flow situation after the onset of foehn, corroborated by field campaigns,108

laboratory experiments, computer simulations, and theoretical investigations, is shown in Fig.109

1. Unfortunately, no continuous measurements covering the vertical cross-section are routinely110

available for classification; only weather stations at the ground. Nowadays with the proliferation111

of automatic weather stations and mesonets in some regions, measurement(s) close to the crest of112

the obstacle are also available so that the first foehn characteristic of air crossing the topographic113

obstacle can be checked. The second characteristic that air descends leads to adiabatic warming114

and consequentially to a decrease in relative humidity. It can be examined through differences115

between crest and downwind station of variables which are approximately conserved in foehn116

flow, such as potential temperature or mixing ratio.117

Classification is made more ambiguous by processes for which potential temperature and mixing118

ratio are not conserved, i.e. turbulent mixing within the foehn flow, at the surface and its upper119

interface; mixing air in from tributaries; phase changes of water (formation and evaporation of120

liquid and solid particles); daytime warming and nighttime cooling due to surface sensible heat121

flux. How large these diabatic effects are varies with season, time of day, location, and large-scale122

and mesoscale flow configurations. Information about their contribution is not readily available so123

that classifications become difficult and possess an unknown and variable degree of uncertainty.124

3. The community foehn classification experiment125

The community foehn classification experiment set out to quantify the uncertainty of human126

foehn classifications, to compare them to machine classifications and to provide a data set for the127
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development of foehn classification algorithms. Three groups of human experts and two objective128

algorithms faced the task of identifying foehn periods. The first group (most of them are co-authors129

of this paper) consisted of 26 seasoned experts in mountain meteorology from different continents130

with operational or research backgrounds and thus a broad range of concepts of what constitutes131

foehn. The other two groups are students taking the advanced weather forecasting course at the132

University of Innsbruck in 2016 (34) and 2017 (18), respectively. The student groups had a fairly133

homogeneous level of expertise because they had received four hours of lectures on foehn and had134

to apply it in homework problems in their advanced weather forecasting course. It was explained135

to the students why it was crucial for the outcome of this study that they worked completely inde-136

pendently. In addition to human experts, two algorithms were used that also employ the concept137

shown in Fig. 1. One, labeled A1 henceforth, is in operational use by the Swiss weather service.138

It uses percentiles of the distribution of the difference of potential temperature between crest and139

downstream locations (small, cf. Fig. 1), wind speed (high) and relative humidity (low) as hard140

thresholds for the classification of three categories: no foehn, foehn air mixed with cold valley air,141

and foehn. The second algorithm, A2, in operational use at the University of Innsbruck, learns142

from the data by itself and does not use hard thresholds. It uses so-called statistical mixture mod-143

els to fit two or more parametric distributions to the observed distribution of classifying variables,144

such as potential temperature difference between crest and downwind stations, and wind speed,145

to yield a probability for foehn between 0 and 1, instead of merely a binary yes/no classification.146

Both algorithms require that the appropriate directional sector for foehn winds be manually set.147

The classification experiment was designed to strike a balance between ideal goals and practical148

feasibility for the human classifiers. Therefore, five topographically different locations of differ-149

ing annual foehn frequency in the Swiss Alps were selected (Table 1 and Fig. 2). Twelve 48-hour150

periods at each station yielded a total of 60 cases, for which the experts had to classify south foehn151
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periods lasting at least 1 h at 30-minute resolution. One of the co-authors, who did not himself152

manually classify (D. Plavcan), selected these cases based on results from the two automated clas-153

sification algorithms, A1 and A2, to cover all permutations: phases of foehn/no-foehn for which154

both, only one, or none agreed. Cases contained none, one or several foehn periods, respectively.155

Unbeknownst to the classifiers, one difficult 48-hour period appeared twice in order to estimate156

reproducibility.157

Each participant received a wind-speed-coded wind rose for each location, a pseudo-3D image158

of the location from Google Earth, exact coordinates, plots of meteorological variables for each159

of the 60 periods of 48 hours, and instructions that contained an annotated example of an addi-160

tional case reproduced here in Fig. 3. To classify only south foehn events, air had to cross the161

Alpine crest from south to north as indicated by wind direction at the crest plotted in black instead162

of gray, which is fulfilled for the whole 48-hour-period in this case. Three periods of foehn are163

inferred; from 9:00—10:20, 11:10—14:30 and 31:00—45:20 (as hh:min). During these periods,164

similar potential temperatures at crest and the classification location imply the second foehn char-165

acteristic of lee-slope descent. Wind directions are from the appropriate sector1 and wind speeds166

are higher. Temperatures increase at the onset of each period, presumably when foehn erodes an167

underlying shallow cold pool. Humidity also drops, reflecting the draw-down of drier air from168

higher altitudes. Because relative humidity (%) instead of specific humidity (g/kg) is plotted, the169

temperature increase additionally contributes to a drop in relative humidity.170

4. Results171

The three human groups classified foehn duration during the 12 x 48-h periods at each of the172

five locations broadly similarly as Fig. 4 shows. Median durations (colored horizontal lines) are173

1deduced from wind roses and topography maps; not shown
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within a few percentage points of each other. The group of mountain meteorology experts have the174

most diverse backgrounds and consequently concepts of what constitutes foehn. As a result, their175

classification variation is larger than that of the second group of students who all had the same176

foehn concept instilled in their course. The variation of the first group of students, on the other177

hand, is larger; mainly because of a few outliers at each location.178

The variation and thus classification uncertainty is smallest at location 4, a station at the northern179

edge of the Alps. The largest uncertainty occurred for location 1, where foehn can potentially blow180

from several wind sectors and for which the crest station might not always be representative of the181

upstream conditions.182

The agreement between the algorithms and human classifications varies. A1 is within a few183

percentage points of the medians of the human groups at locations 2 and 3; A2 at locations 1 and184

4. However, they are at the margins of human classifications for locations 2 (A2), 3 (A2) and 5185

(A1 and A2), and A1 is even outside at locations 1 and 4.186

a. Classification example187

Fig. 5 shows the classifications from the three groups of human classifiers and the two algorithms188

for one of the 60 cases. At about midday of the second day potential temperature at the valley189

station 1 reached a value close to that of the crest station (purple line), indicating descent of190

air. Wind speeds also increased. In the evening the signals in the variables reverse, indicating191

the cessation of foehn conditions. Human classifications agree on a core period of foehn from192

11:00-14:30 (labeled “easy” in the figure) but differ in onset and end times, with end times less193

unanimous than onset times. The two algorithms classify similarly.194

The nighttime period between day’s 1 and 2, on the other hand, is more difficult. About 60%195

of the experts and students classified it as foehn (labeled “difficult”), again agreeing for the core196
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period but differing for onset and even more so for end times. On the evening of the first day the197

wind direction changed into the foehn sector. At the same time both average and peak wind speeds198

increased and potential temperature also increased. Unlike the “easy” period, however, potential199

temperature is five Kelvin colder than at the crest, which likely led the other 40% to classify it as200

a radiatively cooled nocturnal downslope/downvalley flow. Air originating from a different level201

than represented by the crest station (cf. Fig. 2) and mixing of foehn air with radiatively cooled202

air from the valley and its tributaries might have been responsible for such a large difference. The203

three-category algorithm A1 classifies no foehn, whereas the mixture model algorithm A2 gives a204

probability close to 1 that it is foehn. The decrease and fluctuations of the probability towards the205

end of the period stems from the decrease and fluctuations in wind speed and later on the increase206

in potential temperature difference.207

This “difficult” period indicates that a simple “yes” or “no” might not be enough for all ap-208

plications when it comes to classifying foehn flows, for example because of the superposition of209

foehn and a radiatively cooled downvalley wind. Algorithm A1 adds the third category of “mixed210

foehn/valley air” (although it does not classify it as such in this particular case). Algorithm A2211

gives a continuous probability of foehn occurrence.212

b. Changes in classification uncertainty213

Over all 60 cases, delineating the beginning and end of a foehn event had a higher variability214

among all classifiers. Although the majority of classified foehn events started with a tempera-215

ture increase, uncertainty was not clearly different from events which started with no change or216

a decrease of temperature. Classification uncertainty was also higher for nighttime than daytime217

for similar reasons as in the “difficult” period of Fig. 5. Classification uncertainty also varied218

somewhat seasonally with low uncertainty in fall (SON) and winter (DJF) months, highest uncer-219
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tainty in spring (MAM) particularly among human classifiers, and medium uncertainty in summer220

months (JJA).221

c. Reproducibility222

To evaluate reproducibility, one of the more difficult cases (at location 1) occurred twice in223

the data set, unbeknownst to the classifiers. Fig. 6 shows the relative frequency of the absolute224

difference of foehn duration classified at the first occurrence and the second occurence of that225

case. Ideally and for perfect reproducibility, the difference in classified foehn duration among the226

identical cases is zero. However, fewer than half of the classifiers achieved perfect reproducibility.227

This lack of reproducibility is worrisome although probably less extreme for easier cases. Nev-228

ertheless, it corroborates the first author’s personal experience of classifying foehn at different229

locations globally.230

d. Dataset231

The dataset will be available at UC Irvine, which hosts a large repository of classification data232

sets, at https://archive.ics.uci.edu/ml/about.html.233

5. Conclusion234

Several lessons have been learned from this experiment that add on the one hand supporting235

evidence to what was previously at least informally known from other classification tasks ((i)-(iii),236

and on the other hand ((iv) - (vi)) add new knowledge: (i) Busy experts are willing to volunteer237

a chunk of their scarce time provided the classification task is an intellectually challenging puz-238

zle; (ii) Human experts use implicit (and in the case of the Masters students explicitly taught)239

physically-based concepts to help them distinguish between the two categories of foehn/no foehn;240
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(iii) Expert classifications carry uncertainty and are not even necessarily reproducible, which needs241

to be quantified (as here) or at least considered when interpreting results using such classifica-242

tions; (iv) Uncertainty is largest for onset and even more so for the ending of a foehn event and243

also larger during the night; (v) Combining advanced statistical and/or machine learning models244

with physically-based concepts for choosing their input variables yields similar results to those of245

human experts. In addition, they easily scale to longer time series or more locations and are re-246

producible, which is a fundamental scientific requirement and allows the comparison of different247

data sets (foehn occurrence at different locations in this case). It is thus highly recommended to248

develop objective classification procedures, ideally without having to resort to manually specified249

and/or hard limits. If the algorithms are additionally made available as packages of open-source250

languages, foehn classifications can easily be reproduced by other researchers; (vi) Diagnoses251

contain more information when they are probabilistic instead of binary yes/no – a concept that has252

already been implemented for a long time in (weather) forecasts.253

In addition to shedding light on human and machine classification of foehn, the dataset allows254

the testing of existing and newly developed algorithms for unsupervised learning tasks when truth255

is not known, such as in the case of foehn occurrence. It can also serve a community interested in256

estimating the accuracy of previous human foehn classifications and climatologies.257
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TABLE 1. Weather station locations used for foehn classification with their long-term foehn frequencies

determined from automatic algorithms A1 and A2.

291

292

location latitude N longitude E altitude [m MSL] frequency from A1[%] from A2 [%] town

1 46.30287 7.84294 639 6 10 Visp

2 46.88702 8.62181 438 5 5 Altdorf

3 47.12745 9.51753 457 4 4 Vaduz

4 47.42546 9.39847 776 2 2 St. Gallen

5 47.03643 8.30097 457 <1 <1 Luzern

c (crest) 46.65346 8.61625 2287 - - Guetsch
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FIG. 3. Annotated time series of an additional case at location 2 (Altdorf) supplied to classifiers with the

instruction package and other material. Upper panel: wind speed (magenta) and direction (degrees from N;

in grey but bold black when from foehn sector) at the crest station (2287 m amsl); center panel: potential

temperature at crest station (magenta) and classification location (blue) and relative humidity at classification

location (green shaded); lower panel: wind speed (blue), gusts (light blue) and direction (black; degrees from

N) at location 2. All values (except gusts) are averages over the previous 10 minutes. A hypothetical but not

unreasonable classification of three foehn episodes at the station Altdorf is marked by orange rectangles (9:00-

10:20; 11:10-14:30; 31:00-45:20). Foehn episodes had to be classified at a resolution of complete half hour

segments and a minimum duration of 1 hour. In this example, foehn was classified between 9.0 – 10.0, 11.5 –

14.5, and 31.0 – 45.0.
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FIG. 4. Beanplots of classified foehn duration at each location relative to the total duration of the time series

of 12 times 48 hours stratified by classifier groups: experts, two Masters student groups, and the two algorithms.

(A1 for foehn mixed with valley air and pure foehn combined; for A2 a threshold of foehn probability of at least

50% is used). Black lines indicate individual classifications, colored lines the median of each group. Areas are

the empirical densities of each group.
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FIG. 5. Classification case at location 1. First panel: potential temperature (blue) and relative humidity (green)

with added potential temperature at crest (purple). Second panel: wind direction (black), wind speed average

(dark blue) and gusts (light blue) at location 1. Third panel: proportion of human classifier groups that classified

foehn during the time series. Fourth panel: classifications with the three-category algorithm A1 (no foehn (0),

foehn mixed with valley air (1), foehn (2)); Last panel: probability of foehn from the statistical mixture model

A2.
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For perfect reproducibility all classifiers should have had 0 h difference. The bars are for the hour prior to and

including the labeled duration difference.
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