52 research outputs found

    Trimethylamine-N-Oxide Postprandial Response in Plasma and Urine Is Lower After Fermented Compared to Non-Fermented Dairy Consumption in Healthy Adults.

    Get PDF
    Trimethylamine-N-oxide (TMAO) can be produced by the gut microbiota from dietary substrates and is associated with cardiovascular disease. While dairy products contain TMAO precursors, the effect of fermented dairy on TMAO metabolism remains unclear. We used plasma and urine samples collected for two randomised cross-over studies to evaluate the effects of fermented dairy consumption on TMAO metabolism. In Study 1, thirteen healthy young men tested a yogurt and an acidified milk during postprandial tests and a two-week daily intervention. In Study 2, ten healthy adults tested milk and cheese during postprandial tests. TMAO and five related metabolites were measured in plasma and urine by LC-MS/MS and NMR. Faecal microbiota composition was assessed in Study 1 (16S rRNA metagenomics sequencing). Fermented milk products were associated with lower postprandial TMAO responses than non-fermented milks in urine (Study 1, p = 0.01; Study 2, p = 0.02) and in plasma, comparing yogurt and acidified milk (Study 1, p = 0.04). Daily consumption of dairy products did not differentially affect fasting TMAO metabolites. Significant correlations were observed between microbiota taxa and circulating or urinary TMAO concentrations. Fermentation of dairy products appear, at least transiently, to affect associations between dairy products and circulating TMAO levels

    GC-MS Based Metabolomics and NMR Spectroscopy Investigation of Food Intake Biomarkers for Milk and Cheese in Serum of Healthy Humans.

    Get PDF
    The identification and validation of food intake biomarkers (FIBs) in human biofluids is a key objective for the evaluation of dietary intake. We report here the analysis of the GC-MS and 1H-NMR metabolomes of serum samples from a randomized cross-over study in 11 healthy volunteers having consumed isocaloric amounts of milk, cheese, and a soy drink as non-dairy alternative. Serum was collected at baseline, postprandially up to 6 h, and 24 h after consumption. A multivariate analysis of the untargeted serum metabolomes, combined with a targeted analysis of candidate FIBs previously reported in urine samples from the same study, identified galactitol, galactonate, and galactono-1,5-lactone (milk), 3-phenyllactic acid (cheese), and pinitol (soy drink) as candidate FIBs for these products. Serum metabolites not previously identified in the urine samples, e.g., 3-hydroxyisobutyrate after cheese intake, were detected. Finally, an analysis of the postprandial behavior of candidate FIBs, in particular the dairy fatty acids pentadecanoic acid and heptadecanoic acid, revealed specific kinetic patterns of relevance to their detection in future validation studies. Taken together, promising candidate FIBs for dairy intake appear to be lactose and metabolites thereof, for lactose-containing products, and microbial metabolites derived from amino acids, for fermented dairy products such as cheese

    Caloric dose-responsive genes in blood cells differentiate the metabolic status of obese men.

    Get PDF
    We have investigated the postprandial transcriptional response of blood cells to increasing caloric doses of a meal challenge to test whether the dynamic response of the human organism to the ingestion of food is dependent on metabolic health. The randomized crossover study included seven normal weight and seven obese men consuming three doses (500/1000/1500 kcal) of a high-fat meal. The blood cell transcriptome was measured before and 2, 4, and 6 h after meal ingestion (168 samples). We applied univariate and multivariate statistics to investigate differentially expressed genes in both study groups. We identified 624 probe sets that were up- or down-regulated after the caloric challenge in a dose-dependent manner. These transcripts were most responsive to the 1500 kcal challenge in the obese group and were associated with postprandial insulin and oxidative phosphorylation. Furthermore, the data revealed a separation of the obese group into individuals whose response was close to the normal weight group and individuals with a transcriptional response indicative of a loss of metabolic flexibility. The molecular signature provided by the postprandial transcriptomic response of blood cells to increasing caloric doses of a high-fat meal challenge may represent a sensitive way to evaluate the qualitative impact of food on human health

    Assessment of lactase activity in humans by measurement of galactitol and galactonate in serum and urine after milk intake.

    Get PDF
    Lactase is an enzyme that hydrolyzes lactose into glucose and galactose in the small intestine, where they are absorbed. Hypolactasia is a common condition, primarily caused by genetic programming, that leads to lactose maldigestion and, in certain cases, lactose intolerance. Galactitol and galactonate are 2 products of hepatic galactose metabolism that are candidate markers for the intake of lactose-containing foods. The primary objective of the study was to explore the changes in serum and urine metabolomes during postprandial dairy product tests through the association between lactase persistence genotype and the postprandial dynamics of lactose-derived metabolites. We characterized the 6-h postprandial serum kinetics and urinary excretion of lactose, galactose, galactitol, and galactonate in 14 healthy men who had consumed a single dose of acidified milk (800 g) which contained 38.8 g lactose. Genotyping of LCT-13910 C/T (rs4988235) was performed to assess primary lactase persistence. There were 2 distinct postprandial responses, classified as high and low metabolite responses, observed for galactose, and its metabolites galactitol and galactonate, in serum and urine. In all but 1 subject, there was a concordance between the high metabolite responses and genetic lactase persistence and between the low metabolite responses and genetic lactase nonpersistence (accuracy 0.92), galactitol and galactonate being more discriminative than galactose. Postprandial galactitol and galactonate after lactose overload appear to be good proxies for genetically determined lactase activity. The development of a noninvasive lactose digestion test based on the measurement of these metabolites in urine could be clinically useful. This trial was registered at clinicaltrials.gov as NCT02230345

    Inflammatory and metabolic responses to high-fat meals with and without dairy products in men.

    Get PDF
    Postprandial inflammation is an important factor for human health since chronic low-grade inflammation is associated with chronic diseases. Dairy products have a weak but significant anti-inflammatory effect on postprandial inflammation. The objective of the present study was to compare the effect of a high-fat dairy meal (HFD meal), a high-fat non-dairy meal supplemented with milk (HFM meal) and a high-fat non-dairy control meal (HFC meal) on postprandial inflammatory and metabolic responses in healthy men. A cross-over study was conducted in nineteen male subjects. Blood samples were collected before and 1, 2, 4 and 6 h after consumption of the test meals. Plasma concentrations of insulin, glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, TAG and C-reactive protein (CRP) were measured at each time point. IL-6, TNF-α and endotoxin concentrations were assessed at baseline and endpoint (6 h). Time-dependent curves of these metabolic parameters were plotted, and the net incremental AUC were found to be significantly higher for TAG and lower for CRP after consumption of the HFM meal compared with the HFD meal; however, the HFM and HFD meals were not different from the HFC meal. Alterations in IL-6, TNF-α and endotoxin concentrations were not significantly different between the test meals. The results suggest that full-fat milk and dairy products (cheese and butter) have no significant impact on the inflammatory response to a high-fat meal

    Metabolic Footprinting of Fermented Milk Consumption in Serum of Healthy Men.

    Get PDF
    Fermentation is a widely used method of natural food preservation that has consequences on the nutritional value of the transformed food. Fermented dairy products are increasingly investigated in view of their ability to exert health benefits beyond their nutritional qualities. To explore the mechanisms underpinning the health benefits of fermented dairy intake, the present study followed the effects of milk fermentation, from changes in the product metabolome to consequences on the human serum metabolome after its ingestion. A randomized crossover study design was conducted in 14 healthy men [mean age: 24.6 y; mean body mass index (in kg/m2): 21.8]. At the beginning of each test phase, serum samples were taken 6 h postprandially after the ingestion of 800 g of a nonfermented milk or a probiotic yogurt. During the 2-wk test phases, subjects consumed 400 g of the assigned test product daily (200 g, 2 times/d). Serum samples were taken from fasting participants at the end of each test phase. The serum metabolome was assessed through the use of LC-MS-based untargeted metabolomics. Postprandial serum metabolomes after milk or yogurt intake could be differentiated [orthogonal projections to latent structures discriminant analysis (OPLS-DA) Q2 = 0.74]. Yogurt intake was characterized by higher concentrations of 7 free amino acids (including proline, P = 0.03), reduced concentrations of 5 bile acids (including glycocholic acid, P = 0.04), and modulation of 4 indole derivative compounds (including indole lactic acid, P = 0.01). Fasting serum samples after 2 wk of daily intake of milk or yogurt could also be differentiated based on their metabolic profiles (OPLS-DA Q2 = 0.56) and were discussed in light of the postprandial results. Metabolic pathways related to amino acids, indole derivatives, and bile acids were modulated in healthy men by the intake of yogurt. Further investigation to explore novel health effects of fermented dairy products is warranted.This trial was registered at clinicaltrials.gov as NCT02230345

    Promoting More Physical Activity and Less Sedentary Behaviour During the COVID-19 Situation – SportStudisMoveYou (SSMY): A Randomized Controlled Trial

    Get PDF
    Objective: To determine the effect of an innovative, online-based intervention, addressing the possible decline of physical activity (PA) and increase of sedentary behavior (SB) during COVID-19 stay at home restrictions in Switzerland. Methods: This study investigated the effect of a two-week, social cognitive theory based, online-video moderate to vigorous (MV)PA or SB intervention on MVPA and SB behaviour and intention via a 3 group by 2 time point parallel randomized controlled trial during the COVID-19 pandemic. Adults (≥18 yo) were recruited over the internet between April 10th and April 19th 2020 (n = 129; 75.2% female; mean age = 29.0 [SD 11.8] years). Both intervention groups received five videos targeting either SB for the SB group or MVPA for the MVPA group and were compared to an attention control group (fruit and vegetable consumption). It was hypothesized that MVPA time and intention would increase for the MVPA group and the SB group would outperform control on SB behaviour and intention indicators. Results: No significant interactions were found for the MVPA group (n = 41) versus control (n = 40). Only one significant interaction was measured for the SB group (n = 48; intention of active breaks F = (2,114) = 5.84, p = 0.004, ηp2 = 0.09). Although mostly non-significant and small effects, the MVPA group showed results pointing in the hypothesized direction on all PA indicators and the SB on all SB indicators, respectively. Conclusion: Considering this study’s limitations (e.g. small intervention dose), video-based online PA and SB interventions seem promising and feasible. This approach is appropriate for COVID-19 and other stay at home situations

    Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies

    Get PDF
    The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state‐of‐the‐art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful "tips and tricks" along the analytical workflow
    corecore