74 research outputs found

    Increasing Participation of Persons With Intellectual Disabilities With Smart Socio‐Technical Arrangements

    Get PDF
    “Smart devices” and “smart applications” open up a wide range of opportunities for the individual. Today, the vast majority of the population in Europe uses electronic devices with a multitude of “smart applications” as an aid in everyday life. One part of society that could arguably benefit more from these types of technology is that part comprised of persons with disabilities. Statistics show that persons with disabilities, especially those with intellectual disabilities, own and use fewer electronic devices than other parts of the population. Several authors have addressed this issue, referring to it as the “digital divide.” In this argumentative article, we advocate a social‐relational understanding of disability and conceptualise “smartness” as an attribute for situations (and neither for devices and applications nor for people). Through what we call “smart socio‐technical arrangements,” persons with intellectual disabilities potentially gain a higher level of activity and more independence. It appears that an individualised technology environment can contribute to the enablement and increase of participation of each person. The article links up with an applied research project analysing the establishment of socio‐technical arrangements not only for, but also with persons with intellectual disabilities. Our main question here is how to adequately conceptualise the “smartness” of situations for persons with intellectual disabilities. We argue that the use of devices as components of socio‐technical arrangements can optimally lead to smart situations in which persons with intellectual disabilities are more active and less restricted in their activities and participation. “Smartness” then is a synonym for functioning and an antonym of disability

    Remotely controlled isomer selective molecular switching

    Get PDF
    Nonlocal addressing—the “remote control”—of molecular switches promises more efficient processing for information technology, where fast speed of switching is essential. The surface state of the (111) facets of noble metals, a confined two-dimensional electron gas, provides a medium that enables transport of signals over large distances and hence can be used to address an entire ensemble of molecules simultaneously with a single stimulus. In this study we employ this characteristic to trigger a conformational switch in anthradithiophene (ADT) molecules by injection of hot carriers from a scanning tunneling microscope (STM) tip into the surface state of Cu(111). The carriers propagate laterally and trigger the switch in molecules at distances as far as 100 nm from the tip location. The switching process is shown to be long-ranged, fully reversible, and isomer selective, discriminating between cis and trans diastereomers, enabling maximum control.PostprintPeer reviewe

    Bipolar conductance switching of single anthradithiophene molecules

    Get PDF
    The authors acknowledge funding by the Emmy-Noether-Program of the Deutsche Forschungsgemeinschaft, the SFB 767, and the Baden-Württemberg Stiftung. R.P. and A.A. thank the Basque Departamento de Universidades e Investigacion (grant no. IT-756-13) and the Spanish Ministerio de Economia y Competitividad (grant no. FIS2013-48286-C2-8752-P) for financial support.Single molecular switches are basic device elements in organic electronics. The pentacene analogue anthradithiophene (ADT) shows a fully reversible binary switching between different adsorption conformations on a metallic surface accompanied by a charge transfer. These transitions are activated locally in single molecules in a low-temperature scanning tunneling microscope . The switching induces changes between bistable orbital structures and energy level alignment at the interface. The most stable geometry, the “off” state, which all molecules adopt upon evaporation, corresponds to a short adsorption distance at which the electronic interactions of the acene rings bend the central part of the molecule toward the surface accompanied by a significant charge transfer from the metallic surface to the ADT molecules. This leads to a shift of the lowest unoccupied molecular orbital down to the Fermi level (EF). In the “on” state the molecule has a flat geometry at a larger distance from the surface; consequently the interaction is weaker, resulting in a negligible charge transfer with an orbital structure resembling the highest occupied molecular orbital when imaged close to EF. The potential barrier between these two states can be overcome reversibly by injecting charge carriers locally into individual molecules. Voltage-controlled current traces show a hysteresis characteristic of a bipolar switching behavior. The interpretation is supported by first-principles calculations.PostprintPeer reviewe

    Electric-field-driven direct desulfurization

    Get PDF
    The ability to elucidate the elementary steps of a chemical reaction at the atomic scale is important for the detailed understanding of the processes involved, which is key to uncover avenues for improved reaction paths. Here, we track the chemical pathway of an irreversible direct desulfurization reaction of tetracenothiophene adsorbed on the Cu(111) closed-packed surface at the submolecular level. Using the precise control of the tip position in a scanning tunneling microscope and the electric field applied across the tunnel junction, the two carbon–sulfur bonds of a thiophene unit are successively cleaved. Comparison of spatially mapped molecular states close to the Fermi level of the metallic substrate acquired at each reaction step with density functional theory calculations reveals the two elementary steps of this reaction mechanism. The first reaction step is activated by an electric field larger than 2 V nm–1, practically in absence of tunneling electrons, opening the thiophene ring and leading to a transient intermediate. Subsequently, at the same threshold electric field and with simultaneous injection of electrons into the molecule, the exergonic detachment of the sulfur atom is triggered. Thus, a stable molecule with a bifurcated end is obtained, which is covalently bound to the metallic surface. The sulfur atom is expelled from the vicinity of the molecule.PostprintPeer reviewe

    AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    Get PDF
    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types

    Chiral and catalytic effects of site-specific molecular adsorption

    Get PDF
    Open access funded by Max Planck Society. The authors acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC-2123 Quantum Frontiers - 390837967; Core program PC2-PN23080202 and the PN-III-P2-2.1-PED-2021-0378 (contract no. 575PED/2022) granted projects, financed by the Romanian Ministry of Research, Innovation and Digitalization/UEFISCDI; and the generous allocation of computer time at the computing center of Donostia International Physics Center and at the Red Española de Supercomputación (project QHS-2021-2-0019). A.A. acknowledges support from Project No. PID2019-103910GB-I00, funded by MCIN/AEI/10.13039/501100011033/ and FEDER Una manera de hacer Europa, and Project No. IT-1527-22 funded by the Basque Government.The changes of properties and preferential interactions based on subtle energetic differences are important characteristics of organic molecules, particularly for their functionalities in biological systems. Only slightly energetically favored interactions are important for the molecular adsorption and bonding to surfaces, which define their properties for further technological applications. Here, prochiral tetracenothiophene molecules are adsorbed on the Cu(111) surface. The chiral adsorption configurations are determined by Scanning Tunneling Microscopy studies and confirmed by first-principles calculations. Remarkably, the selection of the adsorption sites by chemically different moieties of the molecules is dictated by the arrangement of the atoms in the first and second surface layers. Furthermore, we have investigated the thermal effects on the direct desulfurization reaction that occurs under the catalytic activity of the Cu substrate. This reaction leads to a product that is covalently bound to the surface in chiral configurations.Publisher PDFPeer reviewe

    Controlling single molecule conductance by a locally induced chemical reaction on individual thiophene units

    Get PDF
    The authors acknowledge the Emmy-Noether-Program of the Deutsche Forschungsgemeinschaft, the SFB 767, Core Program PN19-03 (contract number 21 N/08.02.2019) founded by the Romanian Ministry of Research and Innovation, Basque Departamento de Universidades e Investigación (grant no. IT-756-13), the Spanish Ministerio de Economía y Competitividad (grant no. FIS2013-48286-C2-8752-P and FIS2016-75862-P) andthe Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760).Among the prerequisites for the progress of single‐molecule‐based electronic devices are a better understanding of the electronic properties at the individual molecular level and the development of methods to tune the charge transport through molecular junctions. Scanning tunneling microscopy (STM) is an ideal tool not only for the characterization, but also for the manipulation of single atoms and molecules on surfaces. The conductance through a single molecule can be measured by contacting the molecule with atomic precision and forming a molecular bridge between the metallic STM tip electrode and the metallic surface electrode. The parameters affecting the conductance are mainly related to their electronic structure and to the coupling to the metallic electrodes. Here, the experimental and theoretical analyses are focused on single tetracenothiophene molecules and demonstrate that an in situ‐induced direct desulfurization reaction of the thiophene moiety strongly improves the molecular anchoring by forming covalent bonds between molecular carbon and copper surface atoms. This bond formation leads to an increase of the conductance by about 50 % compared to the initial state.Publisher PDFPeer reviewe

    cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells

    Get PDF
    It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node. The involvement of cAMP-dependent regulation of HCN4 in the chronotropic heart rate response is a matter of debate. Here the authors use a knockin mouse model expressing cAMP-insensitive HCN4 channels to discover an inhibitory nonfiring cell pool in the sinoatrial node and a tonic and mutual interaction between firing and nonfiring pacemaker cells that is controlled by cAMP-dependent regulation of HCN4, with implications in chronotropic heart rate responses

    cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells

    Get PDF
    It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node

    Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland

    Get PDF
    Genetic studies of Neolithic and Bronze Age skeletons from Europe have provided evidence for strong population genetic changes at the beginning and the end of the Neolithic period. To further understand the implications of these in Southern Central Europe, we analyze 96 ancient genomes from Switzerland, Southern Germany, and the Alsace region in France, covering the Middle/Late Neolithic to Early Bronze Age. Similar to previously described genetic changes in other parts of Europe from the early 3rd millennium BCE, we detect an arrival of ancestry related to Late Neolithic pastoralists from the Pontic-Caspian steppe in Switzerland as early as 2860-2460 calBCE. Our analyses suggest that this genetic turnover was a complex process lasting almost 1000 years and involved highly genetically structured populations in this region
    corecore