1,375 research outputs found

    Neutrinos and Future Concordance Cosmologies

    Full text link
    We review the free parameters in the concordance cosmology, and those which might be added to this set as the quality of astrophysical data improves. Most concordance parameters encode information about otherwise unexplored aspects of high energy physics, up to the GUT scale via the "inflationary sector," and possibly even the Planck scale in the case of dark energy. We explain how neutrino properties may be constrained by future astrophysical measurements. Conversely, future neutrino physics experiments which directly measure these parameters will remove uncertainty from fits to astrophysical data, and improve our ability to determine the global properties of our universe.Comment: Proceedings of paper given at Neutrino 2008 meeting (by RE

    Study of the leptonic decays of pseudoscalar B,DB, D and vector B∗,D∗B^*, D^* mesons and of the semileptonic B→DB\to D and B→D∗B\to D^* decays

    Get PDF
    We present results for different observables in weak decays of pseudoscalar and vector mesons with a heavy cc or bb quark. The calculations are done in a nonrelativistic constituent quark model improved at some instances by heavy quark effective theory constraints. We determine pseudoscalar and vector meson decay constants that within a few per cent satisfy fVMV/fPMP=1f_V M_V/f_P M_P=1, a result expected in heavy quark symmetry when the heavy quark masses tend to infinity. We also analyze the semileptonic B→DB\to D and B→D∗B\to D^* decays for which we evaluate the different form factors. Here we impose heavy quark effective theory constraints among form factors that are not satisfied by a direct quark model calculation. The value of the form factors at zero recoil allows us to determine, by comparison with experimental data, the value of the ∣Vcb∣|V_{cb}| Cabbibo-Kobayashi-Maskawa matrix element. From the B→DB\to D semileptonic decay we get ∣Vcb∣=0.040±0.006|V_{cb}|=0.040\pm0.006 in perfect agreement with our previous determination based on the study of the semileptonic Λb→Λc\Lambda_b\to \Lambda_c decay and also in excellent agreement with a recent experimental determination by the DELPHI Collaboration. We further make use of the partial conservation of axial current hypothesis to determine the strong coupling constants gB∗Bπ(0)=60.5±1.1g_{B^*B\pi}(0)=60.5\pm 1.1 and gD∗Dπ(0)=22.1±0.4g_{D^*D\pi}(0)=22.1\pm0.4. The ratio R=(gB∗Bπ(0)fB∗MD)/(gD∗Dπ(0)fD∗MB)=1.105±0.005R=(g_{B^*B\pi}(0) f_{B^*}\sqrt{M_D})/ (g_{D^*D\pi}(0) f_{D^*}\sqrt{M_B})=1.105\pm0.005 agrees with the heavy quark symmetry prediction of 1.Comment: 19 Latex pages,6 figures, references added, corrected typos, content enlarge

    The Power Spectrum, Bias Evolution, and the Spatial Three-Point Correlation Function

    Full text link
    We calculate perturbatively the normalized spatial skewness, S3S_3, and full three-point correlation function (3PCF), ζ\zeta, induced by gravitational instability of Gaussian primordial fluctuations for a biased tracer-mass distribution in flat and open cold-dark-matter (CDM) models. We take into account the dependence on the shape and evolution of the CDM power spectrum, and allow the bias to be nonlinear and/or evolving in time, using an extension of Fry's (1996) bias-evolution model. We derive a scale-dependent, leading-order correction to the standard perturbative expression for S3S_3 in the case of nonlinear biasing, as defined for the unsmoothed galaxy and dark-matter fields, and find that this correction becomes large when probing positive effective power-spectrum indices. This term implies that the inferred nonlinear-bias parameter, as usually defined in terms of the smoothed density fields, might depend on the chosen smoothing scale. In general, we find that the dependence of S3S_3 on the biasing scheme can substantially outweigh that on the adopted cosmology. We demonstrate that the normalized 3PCF, QQ, is an ill-behaved quantity, and instead investigate QVQ_V, the variance-normalized 3PCF. The configuration dependence of QVQ_V shows similarly strong sensitivities to the bias scheme as S3S_3, but also exhibits significant dependence on the form of the CDM power spectrum. Though the degeneracy of S3S_3 with respect to the cosmological parameters and constant linear- and nonlinear-bias parameters can be broken by the full configuration dependence of QVQ_V, neither statistic can distinguish well between evolving and non-evolving bias scenarios. We show that this can be resolved, in principle, by considering the redshift dependence of ζ\zeta.Comment: 41 pages, including 12 Figures. To appear in The Astrophysical Journal, Vol. 521, #

    N-body simulations with generic non-Gaussian initial conditions I: Power Spectrum and halo mass function

    Get PDF
    We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum. This is so far a limiting factor of our approach. We then run N-body simulations for the most popular inflationary-motivated non-Gaussian shapes. The halo mass function and the non-linear power spectrum agree with theoretical analytical approximations proposed in the literature, even if they were so far developed and tested only for a particular shape (the local one). We plan to make the simulations outputs available to the community via the non-Gaussian simulations comparison project web site http://icc.ub.edu/~liciaverde/NGSCP.html.Comment: 23 pages, 10 figure

    First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectrum

    Full text link
    We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking ~700 known bright sources from the maps, we estimate residual sources contribute ~3500 uK^2 at 41 GHz, and ~130 uK^2 at 94 GHz, to the power spectrum l*(l+1)*C_l/(2*pi) at l=1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to l~350. The spectrum clearly exhibits a first acoustic peak at l=220 and a second acoustic peak at l~540 and it provides strong support for adiabatic initial conditions. Kogut et al. (2003) analyze the C_l^TE power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by \~30% on degree angular scales, due to secondary scattering.Comment: One of thirteen companion papers on first-year WMAP results submitted to ApJ; 44 pages, 14 figures; a version with higher quality figures is also available at http://lambda.gsfc.nasa.gov/product/map/map_bibliography.htm

    Prospects in Constraining the Dark Energy Potential

    Full text link
    We generalize to non-flat geometries the formalism of Simon et al. (2005) to reconstruct the dark energy potential. This formalism makes use of quantities similar to the Horizon-flow parameters in inflation, can, in principle, be made non-parametric and is general enough to be applied outside the simple, single scalar field quintessence. Since presently available and forthcoming data do not allow a non-parametric and exact reconstruction of the potential, we consider a general parametric description in term of Chebyshev polynomials. We then consider present and future measurements of H(z), Baryon Acoustic Oscillations surveys and Supernovae type 1A surveys, and investigate their constraints on the dark energy potential. We find that, relaxing the flatness assumption increases the errors on the reconstructed dark energy evolution but does not open up significant degeneracies, provided that a modest prior on geometry is imposed. Direct measurements of H(z), such as those provided by BAO surveys, are crucially important to constrain the evolution of the dark energy potential and the dark energy equation of state, especially for non-trivial deviations from the standard LambdaCDM model.Comment: 22 pages, 7 figures. 2 references correcte

    Coulomb chronometry to probe the decay mechanism of hot nuclei

    Get PDF
    In 129 Xe+ nat Sn central collisions from 8 to 25 MeV/A, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajec-tory calculations shows that the time scale between the consecutive break-ups decreases with increasing bombarding energy, becoming quasi-simultaneous above excitation energy E * = 4.0±\pm0.5 MeV/A. This transition from sequential to simultaneous break-up was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.Comment: 12 pages; 13 Figures; 4 Table; Accepted for publication in Physical Review
    • …
    corecore