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Study of the leptonic decays of pseudoscalar B, D and vector B∗, D∗ mesons and of the

semileptonic B → D and B → D∗ decays.
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We present results for different observables in weak decays of pseudoscalar and vector mesons
with a heavy c or b quark. The calculations are done in a nonrelativistic constituent quark model
improved at some instances by heavy quark effective theory constraints. We determine pseudoscalar
and vector meson decay constants that within a few per cent satisfy fV MV /fP MP = 1, a result
expected in heavy quark symmetry when the heavy quark masses tend to infinity. We also analyze
the semileptonic B → D and B → D∗ decays for which we evaluate the different form factors.
Here we impose heavy quark effective theory constraints among form factors that are not satis-
fied by a direct quark model calculation. The value of the form factors at zero recoil allows us
to determine, by comparison with experimental data, the value of the |Vcb| Cabbibo-Kobayashi-
Maskawa matrix element. From the B → D semileptonic decay we get |Vcb| = 0.040 ± 0.006 in
perfect agreement with our previous determination based on the study of the semileptonic Λb → Λc

decay and also in excellent agreement with a recent experimental determination by the DELPHI
Collaboration. We further make use of the partial conservation of axial current hypothesis to de-
termine the strong coupling constants gB∗Bπ(0) = 60.5 ± 1.1 and gD∗Dπ(0) = 22.1 ± 0.4. The ratio
R = ( gB∗Bπ(0) fB∗

√
MD )/( gD∗Dπ(0) fD∗

√
MB ) = 1.105 ± 0.005 agrees with the heavy quark

symmetry prediction of 1.

PACS numbers: 12.15.Hh,12.39.Hg,12.39.Jh,13.20.Fc,13.20.He

I. INTRODUCTION

In systems with a heavy quark with mass much larger than the QCD scale (ΛQCD) a new symmetry, known as heavy
quark symmetry (HQS) [1, 2, 3, 4], arises. In that limit the dynamics of the light quark degrees of freedom becomes
independent of the heavy quark flavor and spin. This is similar to what happens in atomic physics where the electron
properties are approximately independent of the spin and mass of the nucleus (for a fixed nuclear charge). HQS can
be cast into the language of an effective theory (HQET)[5] that allows a systematic, order by order, evaluation of
corrections to the infinity mass limit in inverse powers of the heavy quark masses. HQS and HQET have proved very
useful tools to understand bottom and charm physics and they have been extensively used to describe the dynamics
of systems containing a heavy c or b quark [6, 7]. For instance, all lattice QCD simulations rely on HQS to describe
bottom systems [8].

In a recent publication [9] we have studied the Λ0
b → Λ+

c l−ν̄l and Ξ0
b → Ξ+

c l−ν̄l reactions in a nonrelativistic
quark model. The detailed analysis of the different form factors showed how a direct nonrelativistic calculation does
not meet HQET constraints and we had to improve our model imposing HQET relations among form factors. Our
calculation allowed for a determination of the |Vcb| Cabibbo-Kobayashi-Maskawa (CKM) matrix element given by
|Vcb| = 0.040 ± 0.005+0.001

−0.002 in good agreement with a recent determination by the DELPHI Collaboration |Vcb| =
0.0414 ± 0.0012 ± 0.0021 ± 0.0018 [10]. What we intend to do here is a study of different weak observables of
pseudoscalar and vector mesons with a heavy c or b quark in a non relativistic quark model improved at some points
with HQET constraints. Weak observables are of great interest as they help to probe the quark structure of hadrons
and provide information to measure the CKM matrix elements.

In the case of mesons with a heavy quark HQS leads to many model independent predictions. For instance in the
HQS limit the masses of the lowest lying (s-wave) pseudoscalar and vector mesons with a heavy quark are degenerate.
Nonrelativistic quark models satisfy this constraint: the reduced mass of the system is just the mass of the light quark
and the spin-spin terms, that distinguishes vector from pseudoscalar, are zero if the mass of the heavy quark goes
to infinity. HQS also predicts that the masses and leptonic decay constants of pseudoscalars and vector mesons are
related via fP MP = fV MV , relation that is also satisfied in the quark model in the HQS limit. If one looks now at
the form factors for the semileptonic B → D and B → D∗ decays HQS predicts relations among different form factors
that are also met by the quark model in the HQS limit. The question is to what extent the deviations from the HQS
limit evaluated in the quark model agree with the constraints deduced from HQET. In addition we will make use of
these HQET constraints to improve the quark model results and thus come up with reliable predictions.

The paper is organized as follows: in section II we introduce the meson wave functions and interquark potentials
we shall use in this work. In section III we analyze the leptonic decays of pseudoscalar and vector B and D mesons,
determining the different decay constants. In section IV we study the form factors for the semileptonic B → D l ν̄ and
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B → D∗ l ν̄ decays. In section V we evaluate the strong coupling constants gB∗Bπ and gD∗Dπ. Finally in section VI
we end with the conclusions. The paper also contains three appendices where we collect the expressions for the matrix
elements that are needed for the evaluation of different observables.

Apart from lattice QCD and QCD sum rules (QCDSR) calculations with which we shall compare our results and that
will be quoted in the following, the different observables analyzed in this work have been studied in the quark model
starting with the pioneering work of Ref. [11] within a non relativistic version, to continue with different versions of
the relativistic quark model applied to the determination of decay constants [12, 13, 14, 15, 16, 17, 18, 19, 20, 21], form
factors and differential decay widths [19, 21, 22, 23, 24, 25, 26, 27], Isgur-Wise functions [21, 28, 29, 30, 31, 32, 33, 34]
or strong coupling constants [19, 32, 35, 36, 37, 38] 1.

II. WAVE FUNCTION AND INTERQUARK INTERACTIONS

For a meson M we use the following expression for the wave function
∣∣∣M, λ ~P

〉

NR
=

∫
d3p

∑

α1,α2

φ̂
(M,λ)
α1,α2

( ~p )

(−1)
1

2
−s2

(2π)
3

2

√
2Ef1

(~p1)2Ef2
(~p2)

∣∣∣∣ q, α1 ~p1 =
mf1

mf1
+ mf2

~P − ~p

〉 ∣∣∣∣ q̄, α2 ~p2 =
mf2

mf1
+ mf2

~P + ~p

〉
(1)

where ~P stands for the meson three momentum and λ represents the spin projection in the meson center of mass. α1

and α2 represent the quantum numbers of spin (s), flavor (f) and color (c)

α ≡ (s, f, c) (2)

of the quark and the antiquark, while Ef1
, ~p1 and Ef2

, ~p2 are their respective energies and three-momenta. mf is the

mass of the quark or antiquark with flavor f . The factor (−1)
1

2
−s2 is included in order that the antiquark spin states

have the correct relative phase2. The normalization of the quark and antiquark states is

〈 α′ ~p ′ |α ~p 〉 = δα′, α (2π)3 2E δ(~p ′ − ~p ) (3)

Furthermore, φ̂
(M,λ)
α1,α2

( ~p ) is the momentum space wave function for the relative motion of the quark-antiquark system.
Its normalization is given by

∫
d3p

∑

α1 α2

(
φ̂ (M,λ′)

α1, α2
( ~p )

)∗
φ̂ (M,λ)

α1, α2
( ~p ) = δλ′, λ (4)

and, thus, the normalization of our meson states is

NR

〈
M, λ′ ~P ′ |M, λ ~P

〉

NR
= δλ′, λ (2π)3 δ(~P ′ − ~p ) (5)

For the particular case of ground state pseudoscalar (P ) and vector (V ) mesons we can assume the orbital angular
momentum to be zero and then we will have

φ̂
(P )
α1, α2

( ~p ) =
1√
3

δc1, c2
φ̂

(P )
(s1, f1), (s2, f2)( ~p )

=
1√
3

δc1, c2
(−i) φ̂

(P )
f1, f2

( |~p |) Y00( ~̂p ) (1/2, 1/2, 0; s1, s2, 0)

φ̂
(V, λ)
α1, α2

( ~p ) =
1√
3

δc1, c2
φ̂

(V, λ)
(s1, f1), (s2, f2)( ~p )

=
1√
3

δc1, c2
(−1) φ̂

(V )
f1, f2

( |~p |) Y00( ~̂p ) (1/2, 1/2, 1; s1, s2, λ) (6)

1 The list of references is by no means exhaustive.
2 Note that under charge conjugation (C) quark and antiquark creation operators are related via C c†α( ~p ) C† = (−1)

1

2
−s d†α( ~p ). This means

that the antiquark states with the correct spin relative phase are not d†α( ~p ) |0〉 = | q̄, α ~p 〉 but are instead given by (−1)
1

2
−s d†α( ~p ) |0〉 =

(−1)
1

2
−s | q̄, α ~p 〉.
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where (j1, j2, j3; m1, m2, m3) is a Clebsch-Gordan coefficient, Y00 = 1/
√

4π is the l = m = 0 spherical harmonic, and

φ̂
(M)
f1, f2

(| ~p |) is the Fourier transform of the radial coordinate space wave function. The phases are introduced for later
convenience.

To evaluate the coordinate space wave function we shall use several interquark potentials, one suggested by Bhaduri
and collaborators [39] (BHAD), and four suggested by Silvestre-Brac and Semay [40, 41] (AL1,AL2,AP1,AP2). The
general structure of those potentials in the quark-antiquark sector is

V qq̄
ij (r) = −κ

(
1 − e−r/rc

)

r
+ λrp − Λ +

{
a0

κ

mimj

e−r/r0

rr2
0

+
2π

3mimj
κ′
(
1 − e−r/rc

) e−r2/x2

0

π
3

2 x3
0

}
~σi~σj (7)

with ~σ the spin Pauli matrices, mi the constituent quark masses and

x0(mi, mj) = A

(
2mimj

mi + mj

)−B

(8)

The potentials considered differ in the form factors used for the hyperfine terms, the power of the confining term (p = 1,
as suggested by lattice QCD calculations [42], or p = 2/3 which gives the correct asymptotic Regge trajectories for
mesons [43]), or the use of a form factor in the one gluon exchange Coulomb potential. All free parameters in the
potentials have been adjusted to reproduce the light (π, ρ, K, K∗, etc.) and heavy-light (D, D∗, B, B∗, etc.) meson
spectra. They also lead to precise predictions for the charmed and bottom baryon (Λc,b, Σc,b, Σ∗

c,b, Ξc,b, Ξ′
c,b, Ξ∗

c,b,

Ωc,b and Ω∗
c,b) masses [40, 44] and for the semileptonic Λ0

b → Λ+
c l−ν̄l and Ξ0

b → Ξ+
c l−ν̄l [9] decays.

We will use the above mentioned interquark interactions to evaluate the different observables. This will provide us
with a spread of results that we will consider, and quote, as a theoretical error to the averaged value that will quote
as our central result.

III. LEPTONIC DECAY OF PSEUDOSCALAR AND VECTOR B AND D MESONS

In this section we will consider the purely leptonic decay of pseudo scalars (B, D) and vector (B∗, D∗) mesons.
The charged weak current operator for a specific pair of quark flavors f1 and f2 reads

Jf1 f2

µ (0) = Jf1 f2

V µ (0) − Jf1 f2

A µ (0) =
∑

(c1, s1), (c2, s2)

δc1, c2
Ψα1

(0)γµ(1 − γ5)Ψα2
(0) (9)

with Ψα1
a quark field of a definite spin, flavor and color. The hadronic matrix elements involved in the processes

can be parametrized in terms of a unique pseudoscalar fP or vector fV decay constant as

〈0| Jf1 f2

µ (0)
∣∣∣P, ~P

〉
= 〈0| − Jf1 f2

A µ (0)
∣∣∣P, ~P

〉
= −iPµ fP

〈0| Jf1 f2

µ (0)
∣∣∣V, λ ~P

〉
= 〈0| Jf1 f2

V µ (0)
∣∣∣V, λ ~P

〉
= ε(λ)

µ ( ~P )MV fV (10)

where the meson states are normalized such that
〈

M, λ′ ~P ′ |M, λ ~P
〉

= δλ′, λ (2π)3 2E δ(~P ′ − ~p ) (11)

In the first of Eqs.(10) Pµ is the four-momentum of the meson, while in the second MV and ε
(λ)
µ ( ~P ) are the mass and

the polarization vector of the vector meson. In both cases f1 and f2 are the flavors of the quark and the antiquark
that make up the meson.

Concerns about the experimental determination of the pseudoscalars decay contants have been raised in Ref. [45].
There the effect of radiative decays was analyzed concluding that for B mesons the decay constant determination
could be greatly affected by radiative corrections. In the vector sector, and as rightly pointed out in Ref. [46], the
vector decay constants are not relevant from a phenomenological point of view since B∗ and D∗ will decay through
the electromagnetic and/or strong interaction. They are nevertheless interesting as a mean to test HQS relations.

For mesons at rest we will obtain

fP =
−i

MP
〈0| Jf1 f2

A 0 (0)
∣∣∣P,~0

〉

fV =
−1

MV
〈0| Jf1 f2

V 3 (0)
∣∣∣V, 0~0

〉
(12)
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with MP the mass of the pseudoscalar meson. In our model, and due to the different normalization of our meson
states, we shall evaluate the decay constants as

fP = −i

√
2

MP
〈0| Jf1 f2

A 0 (0)
∣∣∣P,~0

〉

NR

fV = −
√

2

MV
〈0| Jf1 f2

V 3 (0)
∣∣∣V, 0~0

〉

NR
(13)

The corresponding matrix elements are given in appendix A
The results that we obtain for the different decay constants appear in Tables I and II. Starting with fD and fDs

our results are larger that the ones obtained in the lattice by the UKQCD Collaboration [54] or the ones evaluated
using QCD spectral sum rules (QSSR) [57]. Not only the independent values are larger but also the ratio fDs

/fD is
larger in our case. On the other hand our results are in better agreement with other lattice determinations [55, 56].
They also compare very well with the experimental measurements of fD and fDs

in Refs. [47, 48, 49, 50, 51, 53] being
our fDs

/fD ratio in very good agreement with the value obtained using recent CLEO Collaboration data [47, 48]. As
for fB and fBs

, we find a very good agreement in the case of fBs
between our results and the ones obtained in the

lattice or with the use of QSSR. For fB our result is smaller and then also our ratio fBs
/fB is larger.

fD [MeV] fDs
[MeV] fDs

/fD

This work 243+21
−17 341+7

−5 1.41+0.08
−0.09

Experimental data

CLEO 202 ± 41 ± 17 [47] 280 ± 19 ± 28 ± 34 [48] —
ALEPH [49] — 285 ± 19 ± 40 —
OPAL [50] — 286 ± 44 ± 41 —

BEATRICE [51] — 323 ± 44 ± 12 ± 34 —
E653 [52] — 194 ± 35 ± 20 ± 14 —
BES [53] 371+129

−119 ± 25 — —

Lattice data

UKQCD [54] 206(4)+17
−10 229(3)+23

−12 1.11(1)+1
−1

Fermilab Lattice [55] (Preliminary) 225+11
−13 ± 21 263+5

−9 ± 24 —
M. Wingate et al. [56] — 290 ± 20 ± 29 ± 29 ± 6 —

QCD Spectral Sum Rules

S. Narison [57] 203 ± 23 235 ± 24 1.15 ± 0.04

fB [MeV] fBs
[MeV] fBs

/fB

This work 155+15
−12 239+9

−7 1.54+0.09
−0.08

Lattice data

UKQCD [54] 195(6)+24
−23 220(6)+23

−18 1.13(1)+1
−1

M. Wingate et al. [56] — 260 ± 7 ± 26 ± 8 ± 5 —
Lattice world averages 200 ± 30 [58] 230 ± 30 [59] 1.16 ± 0.04 [58]

QCD Spectral Sum Rules

S. Narison [57] 207 ± 21 240 ± 24 1.16 ± 0.04

TABLE I: Pseudoscalar fP decay constants for B and D mesons
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f̃D∗ f̃D∗

s

f̃D∗/f̃D∗

s

This work 9.1+0.9
−0.9 6.5+0.3

−0.4 1.41+0.06
−0.05

UKQCD [54] 8.6(3)+5
−9 8.3(2)+5

−5 1.04(1)+2
−2

f̃B∗ [MeV] f̃B∗

s

[MeV] f̃B∗/f̃B∗

s

This work 35.6+3.4
−3.4 23.0+1.0

−1.5 1.55+0.07
−0.06

UKQCD [54] 28(1)+3
−4 25(1)+2

−3 1.10(2)+2
−2

TABLE II: f̃V = MV /fV for B∗ and D∗ mesons

For the vector meson decay constants we obtain the values

fD∗ = 223+23
−19 MeV fD∗

s

= 326+21
−17 MeV

fB∗ = 151+15
−13 MeV fB∗

s

= 236+14
−11 MeV (14)

which are very much the same as the values obtained for the decay constants of their pseudoscalar counterparts. This
almost equality of pseudoscalar and vector decay constants is expected in HQS in the limit where the heavy quark
masses go to infinity where one would have [4]

fV MV = fP MP , MV = MP (15)

Our decay constants satisfy the above relation within 2%. On the other hand UKQCD lattice data show deviations
as large as 20% for D mesons [54].

In order to compare the values of the vector decay constants with lattice data from Ref. [54] we give in Table II

the quantity f̃V = MV /fV . We find good agreement for f̃D∗ and f̃B∗

s

but not so much for the other two. Also our

ratios f̃D∗/f̃D∗

s

and f̃B∗/f̃B∗

s

are larger than the ones favored by lattice calculations.
On the other hand the ratio

fB∗

√
MB

fD∗

√
MD

= 1.138+0.011
−0.008 (16)

is in very good agreement with the expectation in Ref. [60] where they would get 1.05 ∼ 1.20 for that ratio.

IV. SEMILEPTONIC DECAY OF B INTO Dlν̄ AND D∗lν̄

In this case the strong matrix elements are parametrized as
〈

D, ~P ′
∣∣ Jc b

µ (0)
∣∣ B, ~P

〉

√
MBMD

=

〈
D, ~P ′

∣∣ Jc b
V µ(0)

∣∣ B, ~P
〉

√
MBMD

= (v + v′)µ h+(w) + (v − v′)µ h−(w) (17)

〈
D∗, λ ~P ′

∣∣ Jc b
µ (0)

∣∣ B, ~P
〉

√
MBMD∗

= εµναβ

(
ε(λ) ν( ~P ′ )

)∗
vα v′ β hV (w)

− i
(
ε(λ)

µ ( ~P ′ )
)∗

(w + 1)hA1
(w)

+ i
(
ε(λ) ( ~P ′ )

)∗
· v
(
vµ hA2

(w) + v′µ hA3
(w)
)

(18)

where v = P/MB and v′ = P ′/MD, D∗ are the four velocities of the initial B and final D, D∗ mesons, w = v · v′ 3 and
εµναβ is the fully antisymmetric tensor with ε0123 = +1.

3 w is related to the four momentum transferred square q2 via q2 = M2
B

+ M2
D, D∗ − 2 w MB MD, D∗
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w β+ β− βV βA1
βA2

βA3

1.0 2.6 −5.4 11.9 −1.5 −11.0 2.2
1.1 −0.3 −5.4 8.9 −3.8 −10.3 −0.2
1.2 −3.1 −5.3 6.1 −5.9 −9.8 −2.5
1.3 −5.6 −5.3 3.5 −7.9 −9.3 −4.6
1.4 −8.0 −5.2 1.1 −9.7 −8.8 −6.6
1.5 −10.2 −5.2 −1.1 −11.5 −8.4 −8.5
1.59 −12.1 −5.1

TABLE III: QCD corrections βj(w) in % as evaluated in Ref. [62]

In the limit of infinite heavy quark masses mc, mb → ∞ HQS reduces the six form factors to a unique universal
function ξ(w) known as the Isgur-Wise function [4]

h+(w) = hA1
(w) = hA3

(w) = hV (w) = ξ(w) (19)

h−(w) = hA2
(w) = 0 (20)

Vector current conservation in the equal mass case implies the normalization

ξ(1) = 1 (21)

Away from the heavy quark limit those relations are modified by QCD corrections so that one has

hj(w) =
(
αj + βj(w) + γj(w) + O(1/m2

c,b)
)

ξ(w) (22)

The αj are constants fixed by the behavior of the form factor in the heavy quark limit

α+ = αA1
= αA3

= αV = 1

α− = αA2
= 0 (23)

The different βj account for perturbative radiative corrections [61] while the γj are non perturbative in nature and
are proportional to the inverse of the heavy quark masses [62]. At zero recoil (w = 1) Luke’s theorem [63] imposes
the restriction.

γ+(1) = γA1
(1) = 0 (24)

so that power corrections to h+(1) and hA1
(1) are of order O(1/m2

c,b). In Tables III and IV we collect the values for
the different βj and γj in the full interval of w values allowed in the two decays. These two tables have been taken
from Ref. [62].

w γ+ γ− γV γA1
γA2

γA3

1.0 0.0 −4.1 19.1 0.0 −23.1 −4.1
1.1 2.7 −4.1 20.7 2.9 −21.4 −0.7
1.2 6.2 −4.1 23.1 6.5 −19.8 3.4
1.3 10.5 −4.2 26.3 10.7 −18.3 8.0
1.4 15.3 −4.4 30.0 15.4 −17.0 13.0
1.5 20.6 −4.5 34.3 20.5 −15.8 18.5
1.59 25.7 −4.7

TABLE IV: Power corrections γj(w) in % as evaluated in Ref. [62]
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A. B → D l ν̄ decay

Let us start with the B → D l ν̄ case. In the center of mass of the B meson and taking ~P ′ = −~q = −|~q | ~̂k in the z
direction we will have for the form factors h+(w) and h−(w)4

h+(w) =
1√

2MB2MD

(
V 0(|~q |) +

V 3(|~q |)
|~q | (ED(|~q |) − MD)

)

h−(w) =
1√

2MB2MD

(
V 0(|~q |) +

V 3(|~q |)
|~q | (ED(|~q |) + MD)

)
(25)

where ED(|~q |) =
√

M2
D + |~q |2 and V µ(|~q |) (µ = 0, 3) is given by

V µ(|~q |) =
〈

D, −|~q |~k
∣∣ (Jc b

V )µ(0)
∣∣ B, ~0

〉
(26)

In our model V µ(|~q |) is evaluated as

V µ(|~q |) =
√

2MB2ED(|~q |)
NR

〈
D, −|~q | ~̂k

∣∣ (Jc b
V )µ(0)

∣∣ B, ~0

〉

NR

(27)

which expression is given in appendix B.
In the case of equal masses mb = mc vector current conservation demands that

h+(1) = 1 ; h−(w) = 0 (28)

In this limit we find that h+(1) = 1 so that our value for h+(1) complies with vector current conservation. On the
other hand h−(w) 6= 0 violating vector current conservation.

In the upper left panel of Fig. 1 we show the values of h+(w) and h−(w) for the B → D transition as obtained from
Eqs. (25, 27) with the use of the AL1 interquark potential. The values for h−(w) are not reliable. Actual calculation
shows that they are of the same size as the deviations from zero that one computes in the equal mass case. To improve
on this what we shall do instead is to use the form factor h+(w) and Eq. (22) to extract ξ(w) (we shall call it ξ+(w) )
and from there we can re-evaluate h−(w) with the use of Eq. (22). The results appear in the upper right panel of
Fig. 1 where we also show the lattice results for ξ(w) obtained by the UKQCD Collaboration in Ref. [64]. We find
good agreement with lattice data. Finally in the lower panel of Fig. 1 we show the different ξ+(w) obtained with the
use of the different interquark potentials. As we see from the figure all ξ+(w) are very much the same in the whole
interval for w.

The slope at the origin of our Isgur-Wise function is given by

ρ2 = − 1

ξ+(w)

d ξ+(w)

dw

∣∣∣∣
w=1

= 0.35 ± 0.02 (29)

small compared to the lattice value of ρ2 = 0.81+17
−11 extracted from a best fit to data.

1. Differential decay width

Neglecting lepton masses the differential decay width for the process B → D l ν̄ is given by [65]

dΓ

dw
=

G2
F

48π3
|Vcb|2 M3

D (w2 − 1)3/2(MB + MD)2 F 2
D(w) (30)

where GF = 1.16637(1)× 10−5 GeV−2 [79] is the Fermi decay constant, Vcb is the CKM matrix element for the b → c
weak transition, and FD(w) is given by

FD(w) =

[
h+(w) − 1 − r

1 + r
h−(w)

]
(31)

4 In this case w is related to |~q | via |~q | = MD

√
w2 − 1
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FIG. 1: Upper left panel: h+(w) and h−(w) for the B → D transition as obtained from Eqs. (25, 27) using the AL1 interquark
potential. Upper right panel: h+(w) as before, ξ+(w) obtained from the values of h+(w) using Eq. (22), h−(w) obtained from
ξ+(w) using Eq. (22). We also show the UKQCD lattice data by Bowler et al. [64]. Lower panel: Different ξ+(w) obtained
with the above procedure for the different interquark interactions. Lattice data is also shown.

with r = MD/MB.
In Fig. 2 we show our calculation for FD(w) |Vcb| obtained with the AL1 interquark potential and using three

different values of |Vcb| corresponding to the central and extreme values of the range for |Vcb| favored by the Particle
Data Group (PDG), |Vcb| = 0.039 ∼ 0.044 [79]. We also show the experimental data for the decays B− → D0 l ν̄ and
B̄0 → D+ l ν̄ obtained by the CLEO Collaboration [66], a fit to CLEO data using the form factors of Boyd et al. [67],
and the experimental data for the decay B̄0 → D+ l ν̄ obtained by the BELLE Collaboration [68]. Our results are
larger than experimental data for w > 1.2. Our total integrated width will thus be larger than the experimental one
for any reasonable value of |Vcb|. From our data we extract the slope at w = 1 given by

ρ2
D = − 1

FD(w)

dFD(w)

dw

∣∣∣∣
w=1

= 0.38 ± 0.02 (32)

which is small compared to the values extracted from the experimental data: ρ2
D = 0.76 ± 0.16 ± 0.08 [66] and

ρ2
D = 0.69 ± 0.14 [68] obtained from a linear fit to the data, or ρ2

D = 1.30± 0.27± 0.14 [66] and ρ2
D = 1.16± 0.25 [68]

obtained using the form factors of Boyd et al. [67]. Thus, only our results close to w = 1 seem to be reliable. We
can use our prediction for FD(1) to extract the value of |Vcb| from the experimental determination of the quantity
|Vcb|FD(1). Different values of that quantity appear in Table V

Our result for FD(1) is given by (we do not show the theoretical error which is or the order of 10−4)

FD(1) = 1.04 (33)

which is in good agreement with other calculations FD(1) = 0.98 ± 0.07 [69], FD(1) = 1.04 [11] or
FD(1) = 1.069 ± 0.008 ± 0.002± 0.025 [70]. From our value for FD(1) and the experimental values for |Vcb|FD(1)
we can obtain |Vcb| in the range

|Vcb| = 0.040± 0.006 (34)
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FIG. 2: FD(r, w) |Vcb| obtained with the AL1 interquark potential. Solid line: our results using |Vcb| = 0.0415. Dashed
line: our results using |Vcb| = 0.044. Dotted line: our results using |Vcb| = 0.039. Circles: experimental data by the CLEO
Collaboration [66]. Dashed-dotted line: fit to CLEO data using the form factors of Boyd et al. [67]. Diamonds: experimental
data by the BELLE Collaboration [68].

|Vcb|FD(1)

CLEO Collaboration [66] 0.0416 ± 0.0047 ± 0.0037
BELLE Collaboration [68] 0.0411 ± 0.0044 ± 0.0052

TABLE V: |Vcb|FD(1) values obtained by different experiments.

This result agrees with our recent determination based on the analysis of the Λb → Λc l ν̄l reaction from where we got
|Vcb| = 0.040 ± 0.005 [9].

B. B → D∗ l ν̄ decay

Working again in the center of mass of the B meson and taking ~P ′ = −~q = −|~q | ~̂k in the z direction we will have
for the form factors hV (w), hA1

(w), hA2
(w) and hA3

(w) the expressions

hV (w) =
√

2

√
MD∗

MB

V
(∗)
−1, 2(|~q |)

|~q |

hA1
(w) = i

√
2

w + 1

1√
MBMD∗

A
(∗)
−1, 1(|~q |)

hA2
(w) = i

√
MD∗

MB

(
−

A
(∗)
0, 0(|~q |)
|~q | +

ED∗(|~q |)A
(∗)
0, 3(|~q |)

|~q |2 −
√

2 MD∗

A
(∗)
−1, 1(|~q |)
|~q |2

)

hA3
(w) = i

M2
D∗√

MBMD∗

(
−

A
(∗)
0, 3(|~q |)
|~q |2 +

√
2

MD∗

ED∗(|~q |)A
(∗)
−1, 1(|~q |)

|~q |2

)
(35)

with ED∗(|~q |) =
√

M2
D∗ + |~q |2, and where V

(∗)
λ, µ(|~q |) and A

(∗)
λ, µ(|~q |) are given by

V
(∗)
λ, µ(|~q |) =

〈
D∗, λ − |~q |~k

∣∣ (Jc b
V )µ(0)

∣∣ B, ~0
〉

A
(∗)
λ, µ(|~q |) =

〈
D∗, λ − |~q |~k

∣∣ (Jc b
A )µ(0)

∣∣ B, ~0
〉

(36)
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FIG. 3: Left panel: hV (w), hA1
(w), hA2

(w) and hA3
(w) form factors obtained using Eq. (35). Right panel: R1(w) and R2(w)

ratios. In both panels the AL1 interquark potential has been used.

In our model V
(∗)
λ, µ(|~q |) and A

(∗)
λ, µ(|~q |) are evaluated as

V
(∗)
λ, µ(|~q |) =

√
2MB2ED∗(|~q |)

NR

〈
D∗, λ − |~q | ~̂k

∣∣ (Jc b
V )µ(0)

∣∣ B, ~0

〉

NR

A
(∗)
λ, µ(|~q |) =

√
2MB2ED∗(|~q |)

NR

〈
D∗, λ − |~q | ~̂k

∣∣ (Jc b
A )µ(0)

∣∣ B, ~0

〉

NR

(37)

with expressions given in appendix C.
In the left panel of Fig. 3 we show our results for the hV (w), hA1

(w), hA2
(w) and hA3

(w) form factors, obtained
with the AL1 interquark potential and the use of Eq. (35). In the right panel of the same figure we show the ratios

R1(w) =
hV (w)

hA1
(w)

R2(w) =
hA3

(w) + r hA2
(w)

hA1
(w)

(38)

where now r = MD∗/MB. These ratios are expected to vary very weakly with w. We find indeed that this is so in
our case being our values of R1(w) and R2(w) within 4% of unity. In Table VI we give now our results for R1(1)
and R2(1) and compare them to different experimental5 and theoretical determinations. We find discrepancies of the
order of 15 ∼ 33 % for R1(1) and 13 ∼ 46 % for R2(1).

One can understand these discrepancies by evaluating the different ξ(w) functions obtained from the form factors
with the use of Eq. (22) and the β and γ coefficients of Neubert given in Tables III and IV. The results appear in the
upper left panel of Fig. 4. One can infer from the figure that our results for hA2

(w) are not reliable. Also we somehow
miss the correct normalization for hV (1). On the other hand the values of ξA1

(w) and ξA3
(w) are equal within 4%

and in reasonable agreement with lattice data from Ref. [64].
To improve the nonrelatistic quark model prediction, and similarly to what we did in subsection IVA, we will take

ξA1
(w) as our model determination of the Isgur-Wise function ξ(w) and we will reevaluate the form factors with the

use of Eq. (22). What we obtain is now depicted in the upper right panel of Fig. 4. In the lower panel we give the
different ξA1

(w) obtained with the different interquark potentials. They do not show any significant difference.
The slope of the ξA1

(w) function at the origin is given by

ρ2 = 0.55 ± 0.02 (39)

5 The experimental results by the CLEO and BABAR Collaborations have been obtained with the assumption that R1(w) and R2(w)
are constants.
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R1(1) R2(1)
This work 1.01 ± 0.02 1.04 ± 0.01
CLEO [71] 1.18 ± 0.30 ± 0.12 0.71 ± 0.22 ± 0.07

BABAR (Preliminary) [72] 1.328 ± 0.055 ± 0.025 ± 0.025 0.920 ± 0.044 ± 0.020 ± 0.013

Caprini et al. [73] 1.27 0.80
Grinstein et al. [74] 1.25 0.81

Close et al. [28] 1.15 0.91

TABLE VI: R1(1) and R2(1)

to be compared to the lattice result ρ2 = 0.93+47
−59 [64]. In this case we are within lattice errors, but one can not be

very conclusive due to the large value of the latter in this case.
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FIG. 4: Upper left panel: different ξ(w) functions obtained from the hV (w), hA1
(w), hA2

(w) and hA3
(w) form factors using

Eq. (22) and the AL1 interquark potential. Lattice data by K. C. Bowler et al. from Ref. [64] are also shown. Upper right
panel: form factors obtained from ξA1

(w) with the use of Eq. (22). Lower panel: Different ξA1
(w) obtained with the different

interquark potentials.

Finally in Fig. 5 we give the ratio ξ+(w)/ξA1
(w) evaluated with the AL1 interquark potential. We see the differences

between the two Isgur-Wise functions are at the level of 3-7%.
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FIG. 5: Ratio of our two Isgur-Wise functions calculated with the AL1 interquark potential.

1. Differential decay width

Neglecting lepton masses the differential decay width for the process B → D∗ l ν̄ is given by [75]

dΓ

dw
=

G2
F

48π3
|Vcb|2 (MB − MD∗)2 M3

D∗

√
(w2 − 1) (w + 1)2

[
1 +

4w

w + 1

1 − 2wr + r2

(1 − r)2

]
F 2

D∗(w) (40)

where FD∗(w) is defined as

FD∗(w) = hA1
(w)

√√√√ H̃2
0 (w) + H̃2

+(w) + H̃2
−(w)

1 + 4w
w+1

1−2wr+r2

(1−r)2

(41)

The H̃j(w) are helicity form factors given in terms of the R1(w) and R2(w) ratios as

H̃0(w) = 1 +
w − 1

1 − r
[1 − R2(w)]

H̃±(w) =

√
1 − 2wr + r2

1 − r

[
1 ∓

√
w − 1

w + 1
R1(w)

]
(42)

Similarly to Fig. 2, in Fig. 6 we show our results for the quantity FD∗(w) |Vcb| evaluated with the AL1 interquark
potential and using the values of |Vcb| corresponding to the central and extreme values of the range for |Vcb| favored
by the PDG. We also show the experimental data by the CLEO Collaboration [71] for the B− → D∗0 l ν̄ reaction
(squares), and for the B̄0 → D∗+ l ν̄ reaction (circles) together with a best fit, and the experimental data by the
BELLE Collaboration [76] for the B̄0 → D∗+ l ν̄ reaction (diamonds). We find good agreement with CLEO data for
small w values. Disagreement starts already at around w = 1.1 where our resuls start to go above the experimental
data. BELLE data are systematically below our results.

Also our slope at the origin

ρ2
D∗ = − 1

FD∗(w)

dFD∗(w)

dw

∣∣∣∣
w=1

= 0.31 ± 0.02 (43)

is smaller than the value obtained by the BELLE Collaboration ρ2
D∗ = 0.81 ± 0.12 [76] using a linear fit to their data.

All this means that our total width would be larger than the experimental one for any reasonable value of Vcb. On
the other hand experimentalists are able to extract the value of |Vcb|FD∗(1). Different experimental results for that
quantity appear in Table VII.
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FIG. 6: FD∗(r, w) |Vcb| obtained with the AL1 interquark potential. Solid line: our results using |Vcb| = 0.0415. Dashed line:
our results using |Vcb| = 0.044. Dotted line: our results using |Vcb| = 0.039. Circles and squares: experimental data by the
CLEO Collaboration [71]. Dashed-dotted line: fit to CLEO Collaboration data. Diamonds: experimental data by the BELLE
Collaboration [76].

|Vcb|FD∗(1)

(CLEO Coll.) [71] 0.0431 ± 0.0013 ± 0.0018
(DELPHI Coll.) [10] 0.0392 ± 0.0018 ± 0.0023
(BELLE Coll.) [76] 0.0354 ± 0.0019 ± 0.0018
(BABAR Coll) [77] 0.0355 ± 0.0003 ± 0.0016

TABLE VII: |Vcb|FD∗(1) values obtained by different experiments.

Our result for FD∗(1) is given by

FD∗(1) = hA1
(1) = 0.983± 0.001 (44)

Comparison with the experimental data for |Vcb|FD∗(1) allows us to extract values for |Vcb| in the range

|Vcb| = 0.0333 ∼ 0.0461 (45)

One can not be more conclusive due to the dispersion in the experimental data for |Vcb|FD∗(1). From DELPHI data
alone we would obtain |Vcb| = 0.040 ± 0.003 in perfect agreement with our determination using the B → D reaction
data. We should also say that our value for FD∗(1) is larger than the lattice determination FD∗(1) = 0.919+0.030

−0.035 by
S. Hashimoto et al. [78] normally used by experimentalists to extract their |Vcb| values. A new unquenched lattice
determination of this quantity by the Fermilab Lattice Collaboration is in progress [59].

V. STRONG COUPLING CONSTANTS gH∗Hπ

In this section we will evaluate the strong coupling constants gH∗Hπ where H stands for a B or D meson. To this
end we shall make use of the partial conservation of the axial current hypothesis (PCAC) which relates the divergence
of the axial current to the pion field as

∂µ Jd u
A µ(x) = fπ m2

π Φπ−(x) (46)

where fπ = 130.7 ± 0.1 ± 0.36MeV [79] is the pion decay constant, mπ = 139.57MeV [79] is the pion mass, and
Φπ−(x) is the charged pion field that destroys a π− and creates a π+. Using the LSZ reduction formula one can relate
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the matrix element of the divergence of the axial current to the pion emission amplitude as

〈H, ~P ′ | qµ Jd u
A µ(0) |H∗, λ ~P 〉 = −i fπ

m2
π

q2 − m2
π

A(λ)
H∗Hπ(P ′, P ) (47)

where q = P − P ′ and A(λ)
H∗Hπ(P ′, P ) is the pion emission amplitude for the process H∗ → Hπ given by6

A(λ)
H∗Hπ(P ′, P ) = − gH∗Hπ(q2)

(
qµ ε(λ)

µ (~P )
)

(48)

The matrix element on the left hand side of Eq.(47) has a pion pole contribution that can be easily evaluated to be

〈H, ~P ′ | qµ Jd u
A µ(0) |H∗, λ ~P 〉pion−pole = −i fπ

q2

q2 − m2
π

A(λ)
H∗Hπ(P ′, P ) (49)

so that we can extract a non-pole contribution

〈H, ~P ′ | qµ Jd u
A µ(0) |H∗, λ ~P 〉non−pole = i fπ A(λ)

H∗Hπ(P ′, P )

= −i fπ gH∗Hπ(q2)
(
qµ ε(λ)

µ (~P )
)

(50)

which is the one we shall evaluate within the quark model. For the matrix element on the left hand side of Eq.(50)
we can use a parametrization similar to the one used in Eq.(18)

〈H, ~P ′ | qµ Jd u
A µ(0) |H∗, λ ~P 〉non−pole = qµ

{
−i ε(λ)

µ (~P ) (w + 1) hA1
(w)

+i
(
ε(λ)(~P ) · v′

) (
v′µ hA2

(w) + vµ hA3
(w)
)}√

MHMH∗ (51)

with the result that

gH∗Hπ(q2) =
1

fπ

{
(w + 1)hA1

(w) + w

(
MH∗

MH
hA2

(w) − hA3
(w)

)

+

(
MH∗

MH
hA3

(w) − hA2
(w)

)}√
MHMH∗ (52)

The evaluation of the form factors is done is a similar way as the one described in subsection IVB. The results that
we get for q2 = 0 are

gD∗Dπ(0) = 22.1 ± 0.4 , gB∗Bπ(0) = 60.5 ± 1.1 (53)

to be compared to the experimental determination gD∗Dπ(m2
π) = 17.9 ± 0.3 ± 1.9 by the CLEO Collaboration [80],

the lattice results gD∗Dπ(m2
π) = 18.8 ± 2.3+1.1

−2.0 [81] and gB∗Bπ(0) = 47 ± 5 ± 8 [82], or a recent determination using

QCDSR for which gD∗Dπ(m2
π) = 14.0 ± 1.5 and gB∗Bπ(0) = 42.5 ± 2.6 [83]. Older QCDSR results give smaller

values for both coupling constants. For instance, the calculation within QCDSR on the light cone in Ref. [84] give
gD∗Dπ(m2

π) = 12.5 ± 1 and gB∗Bπ(0) = 29 ± 3 7. The latter are small compared to lattice data or the experimental
determination of gD∗Dπ(m2

π) by the CLEO Collaboration.
From our results we obtain the ratio

R =
gB∗Bπ(0) fB∗

√
MD

gD∗Dπ(0) fD∗

√
MB

= 1.105± 0.005 (54)

in good agreement with HQS that predicts a value of 1 with 1/mQ corrections appearing in next to leading order [60]
8. Our result in Eq.(54) is also in agreement with the one obtained combining lattice data for fB∗ and fD∗ from

6 Corresponding to the emission of a π+

7 Values for both coupling constants obtained prior to 1995 within different approaches can be found in Ref. [84] and references therein
8 Note the strong coupling constant used in Ref. [60] is given in terms of ours as (gH∗Hπ fπ)/(2MH∗ ) with H = B, D
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Ref. [54], for gB∗Bπ(0) from Ref. [81], and the experimental CLEO Collaboration data for gD∗Dπ(m2
π) from Ref. [80].

In this case one gets

R|Exp.−Latt. = 1.26 ± 0.36 (55)

where we have added errors in quadratures. A calculation using light cone QCDSR gives [84]

R|QCDSR = 0.92 (56)

VI. CONCLUDING REMARKS

Our analysis of leptonic decay constants of mesons with a heavy c or b quark shows that in a nonrelativistic
calculation the equality fV MV = fP MP is satisfied within 2%. This equality is expected in HQS in the limit where
the heavy quark masses go to infinity. The nonrelativistic result suggests that the HQS infinite mass limit sets in
already at the mc scale, something that is not supported by lattice data for D mesons where one finds deviations as
large as 20% from the above equality.

One also finds problems in the semileptonic B → D and B → D∗ decays. We have seen how the h−(w) form
factor of the B → D decay and the hA2

(w) form factor of the B → D∗ decay are not reliably calculated in the
nonrelativistic quark model where one finds large deviations from the HQET relations of Eq.(22). We have tried
to remedy this failure by evaluating the Isgur-Wise function from a form factor whose calculation we trusted in the
quark model, h+(w) for the B → D decay, and hA1

(w) for the B → D∗ decay. Those Isgur-Wise function were later
used together with HQET constraints in Eq.(22) to recalculate all other form factors. The two Isgur-Wise functions
thus determined show an overall reasonable agreement with lattice data but in both cases the slope seems to be
too small. This deficiency multiply its effects when one goes to larger w values and as a consequence the quantities
FD(w) |Vcb| and FD∗(w) |Vcb| go above experimental data for w values larger than 1.2, and for any reasonable value
of |Vcb|. A failure of some kind is expected in a nonrelativistic calculation as w increases. For w = 1.2 the three
momenta of the final meson amounts to 66% ot its mass and relativistic corrections in the wave function could start
to be important. On the other hand we believe our results are sound at zero recoil (w = 1). That enables us to
obtain |Vcb| = 0.040 ± 0.006 from the B → D decay, in perfect agreement with the value |Vcb| = 0.040 ± 0.005
previously obtained by us from the analysis of the Λb → Λc semileptonic decay, and in good agreement with a recent
determination |Vcb| = 0.0414 ± 0.0012 ± 0.0021 ± 0.0018 by the DELPHI Collaboration. The experimental situation
concerning the B → D∗ reaction is not so clear as different experiments give values for FD∗(w) |Vcb| which are hardly
compatible. From DELPHI Collaboration data we would get |Vcb| = 0.040±0.003 in agreement with the above result.

Finally we have made use of PCAC to evaluate the strong coupling constants gB∗Bπ and gD∗Dπ. Our results are
larger than experimental data or the results provided by lattice and QCDSR calculations. In this case the final meson
is nearly at rest and one would expect a nonrelativistic calculation to perform better. The main difference with the
other observables analyzed is that here the two active quarks are the light ones. The discrepancies might hint at a
possible sizeable renormalization of the axial coupling for light constituents quarks. On the other hand the value for
the ratio R in Eq. (54) agrees with the HQS prediction and with the one evaluated using a combination of lattice and
experimental data, being also close to a QCDSR determination.
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APPENDIX A: MATRIX ELEMENTS FOR THE LEPTONIC DECAY OF PSEUDO SCALARS AND

VECTOR MESONS

The matrix element needed for the evaluation of the pseudoscalar decay constant is given by

〈
0
∣∣∣Jf1 f2

A 0 (0)
∣∣∣ P,~0

〉

NR
=

√
3

∫
d3p

∑

s1,s2

φ̂
(P )
(s1,f1), (s2,f2)( ~p )

(−1)
1

2
−s2

(2π)
3

2

√
2Ef1

(~p )2Ef2
(~p )
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v̄s2,f2
( ~p ) γ0γ5 us1,f1

(−~p )

=
√

3

∫
d3p

∑

s1,s2

φ̂
(P )
(s1,f1), (s2,f2)( ~p )

(−1)
1

2
−s2

(2π)
3

2

√
2Ef1

(~p )2Ef2
(~p )

ū−s2,f2
( ~p ) γ0 us1,f1

(−~p )

= i

√
3

π

∫ ∞

0

d|~p | Φ̂
(P )
f1, f2

(|~p |) |~p |2
√

(Ef1
(~p ) + mf1

)(Ef2
(~p ) + mf2

)

4Ef1
(~p )Ef2

(~p )
(

1 − |~p |2
(Ef1

(~p ) + mf1
)(Ef2

(~p ) + mf2
)

)
(A1)

where we have used the fact that vs,f ( ~p ) = γ5 u−s,f( ~p ).
Similarly for the vector meson case

〈
0
∣∣∣Jf1 f2

V 3 (0)
∣∣∣ V, 0~0

〉

NR
=

√
3

∫
d3p

∑

s1,s2

φ̂
(V, 0)
(s1,f1), (s2,f2)

( ~p )
(−1)

1

2
−s2

(2π)
3

2

√
2Ef1

(~p )2Ef2
(~p )

v̄s2,f2
( ~p ) γ3 us1,f1

(−~p )

=
√

3

∫
d3p

∑

s1,s2

φ̂
(V,0)
(s1,f1), (s2,f2)

( ~p )
(−1)

1

2
−s2

(2π)
3

2

√
2Ef1

(~p )2Ef2
(~p )

ū−s2,f2
( ~p ) γ3γ5 us1,f1

(−~p )

=
−
√

3

π

∫ ∞

0

d|~p | Φ̂
(V )
f1, f2

(|~p |) |~p |2
√

(Ef1
(~p ) + mf1

)(Ef2
(~p ) + mf2

)

4Ef1
(~p )Ef2

(~p )
(

1 +
|~p |2

3(Ef1
(~p ) + mf1

)(Ef2
(~p ) + mf2

)

)
(A2)

APPENDIX B: EXPRESSION FOR THE V µ(|~q |) MATRIX ELEMENT

The expression for V µ(|~q |) is given by

V µ(|~q |) =
√

2MB2ED(|~q |)
NR

〈
D, −|~q | ~̂k

∣∣∣∣ (J
c b
V )µ(0)

∣∣∣∣B, ~0

〉

NR

=
√

2MB2ED(|~q |)
∫

d3p
∑

s1,s2

(
φ̂

(D)
(s1,c), (s2,f2)(

mf2

mc + mf2

|~q |~̂k + ~p )

)∗ ∑

s′

1

φ̂
(B)
(s′

1
,b), (s2,f2)( ~p )

1√
2Ec(|~q |~̂k + ~p )2Eb(~p )

ūs1,c(−|~q | ~̂k − ~p ) γµ us′

1
,b(−~p ) (B1)

where f2 represents a light u or d quark.
Going a little further we have

V 0(|~q |) =
√

2MB2ED(|~q |)
∫

d3p
1

4π

(
φ̂

(D)
c, f2

(| mf2

mc + mf2

|~q |~̂k + ~p |)
)∗

φ̂
(B)
b, f2

(| ~p |)
√√√√√√

(
Ec(|~q |~̂k + ~p ) + mc

) (
Eb(~p ) + mb

)

4Ec(|~q |~̂k + ~p ) Eb(~p )



1 +
|~p |2 + pz |~q |(

Ec(|~q |~̂k + ~p ) + mc

) (
Eb(~p ) + mb

)



 (B2)

In the case of equal masses mb = mc and for |~q | = 0 (w = 1) we will obtain

V 0(|~q |)
∣∣
|~q |=0

= 2MB

(B3)
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Similarly

V 3(|~q |) = −
√

2MB2ED(|~q |)
∫

d3p
1

4π

(
φ̂

(D)
c, f2

(| mf2

mc + mf2

|~q |~̂k + ~p |)
)∗

φ̂
(B)
b, f2

(| ~p |)
√√√√√√

(
Ec(|~q |~̂k + ~p ) + mc

) (
Eb(~p ) + mb

)

4Ec(|~q |~̂k + ~p ) Eb(~p )

(
pz

Eb(~p ) + mb
+

pz + |~q |
Ec(|~q |~̂k + ~p ) + mc

)
(B4)

APPENDIX C: EXPRESSIONS FOR THE V
(∗)

λ, µ AND A
(∗)
λ, µ MATRIX ELEMENTS

The expressions for the V
(∗)
λ, µ and A

(∗)
λ, µ matrix elements are given by

V
(∗)
λ, µ(|~q |) =

√
2MB2ED∗(|~q |)

NR

〈
D∗, λ − |~q | ~̂k

∣∣∣∣ (J
c b
V )µ(0)

∣∣∣∣B, ~0

〉

NR

=
√

2MB2ED∗(|~q |)
∫

d3p
∑

s1,s2

(
φ̂

(D∗, λ)
(s1,c), (s2,f2)(

mf2

mc + mf2

|~q |~̂k + ~p )

)∗ ∑

s′

1

φ̂
(B)
(s′

1
,b), (s2,f2)( ~p )

1√
2Ec(|~q | ~̂k + ~p ) 2Eb(~p )

ūs1,c(−|~q | ~̂k − ~p ) γµ us′

1
,b(−~p )

A
(∗)
λ, µ(|~q |) =

√
2MB2ED∗(|~q |)

NR

〈
D∗, λ − |~q | ~̂k

∣∣∣∣ (J
c b
A )µ(0)

∣∣∣∣B, ~0

〉

NR

=
√

2MB2ED∗(|~q |)
∫

d3p
∑

s1,s2

(
φ̂

(D∗, λ)
(s1,c), (s2,f2)(

mf2

mc + mf2

|~q |~̂k + ~p )

)∗ ∑

s′

1

φ̂
(B)
(s′

1
,b), (s2,f2)( ~p )

1√
2Ec(|~q | ~̂k + ~p ) 2Eb(~p )

ūs1,c(−|~q | ~̂k − ~p ) γµγ5 us′

1
,b(−~p )

(C1)

So that

V
(∗)
−1, 2(|~q |) = − 1√

2

√
2MB2ED∗(|~q |)

∫
d3p

1

4π

(
φ̂

(D∗)
c, f2

(| mf2

mc + mf2

|~q |~̂k + ~p | )
)∗

φ̂
(B)
b, f2

(| ~p |)
√√√√√√

(
Ec(|~q |~̂k + ~p ) + mc

) (
Eb(~p ) + mb

)

4Ec(|~q |~̂k + ~p ) Eb(~p )

(
pz

Eb(~p ) + mb
− pz + |~q |

Ec(|~q |~̂k + ~p ) + mc

)

(C2)

A
(∗)
−1, 1(|~q |) = − i√

2

√
2MB2ED∗(|~q |)

∫
d3p

1

4π

(
φ̂

(D∗)
c, f2

(| mf2

mc + mf2

|~q |~̂k + ~p | )
)∗

φ̂
(B)
b, f2

(| ~p |)
√√√√√√

(
Ec(|~q |~̂k + ~p ) + mc

) (
Eb(~p ) + mb

)

4Ec(|~q |~̂k + ~p ) Eb(~p )



1 +
2p2

x − | ~p |2 − pz |~q |(
Ec(|~q |~̂k + ~p ) + mc

)(
Eb(~p ) + mb

)





(C3)

A
(∗)
0, 0(|~q |) = −i

√
2MB2ED∗(|~q |)

∫
d3p

1

4π

(
φ̂

(D∗)
c, f2

(| mf2

mc + mf2

|~q |~̂k + ~p | )
)∗

φ̂
(B)
b, f2

(| ~p |)
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√√√√√√

(
Ec(|~q |~̂k + ~p ) + mc

) (
Eb(~p ) + mb

)

4Ec(|~q |~̂k + ~p ) Eb(~p )

(
pz

Eb(~p ) + mb
+

pz + |~q |
Ec(|~q |~̂k + ~p ) + mc

)

(C4)

A
(∗)
0, 3(|~q |) = −i

√
2MB2ED∗(|~q |)

∫
d3p

1

4π

(
φ̂

(D∗)
c, f2

(| mf2

mc + mf2

|~q |~̂k + ~p | )
)∗

φ̂
(B)
b, f2

(| ~p |)
√√√√√√

(
Ec(|~q |~̂k + ~p ) + mc

) (
Eb(~p ) + mb

)

4Ec(|~q |~̂k + ~p ) Eb(~p )



1 +
2p2

z − | ~p |2 + pz |~q |(
Ec(|~q |~̂k + ~p ) + mc

)(
Eb(~p ) + mb

)



 (C5)
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