8 research outputs found

    Pathophysiological mechanisms of renal damage in obstructive uropathies as potential therapeutic targets: A literature review

    Get PDF
    Obstructive uropathies are a group of conditions characterized by urinary tract blockages, leading to impaired urine flow and renal damage. This comprehensive literature review aims to explore the pathophysiological mechanisms underlying renal damage in obstructive uropathies and identify potential therapeutic targets for intervention. The review synthesizes current knowledge from a wide range of studies and provides an overview of the complex cellular and molecular processes involved in renal damage progression, including hemodynamic alterations, oxidative stress, interstitial inflammation, and tubulointerstitial fibrosis. Key players in the pathogenesis of renal damage, such as the renin-angiotensin-aldosterone system, reactive oxygen species, immune cells, and fibrogenic factors, are discussed in detail. Furthermore, potential therapeutic targets, including renin-angiotensin inhibitors, antioxidants, anti-inflammatory agents, and antifibrotic strategies, are identified based on preclinical and experimental studies. Additionally, emerging therapeutic modalities like mesenchymal stem cells and extracellular vesicles derived from MSCs are explored for their potential in attenuating renal damage and promoting tissue repair. Understanding the pathophysiological mechanisms and identifying potential therapeutic targets is crucial for the development of effective interventions to mitigate renal damage in obstructive uropathies, ultimately improving patient outcomes and quality of life. Further research and clinical trials are needed to translate these promising findings into clinical practice and address the unmet therapeutic needs in this patient populatio

    Visual Laterality of Calf–Mother Interactions in Wild Whales

    Get PDF
    Behavioral laterality is known for a variety of vertebrate and invertebrate animals. Laterality in social interactions has been described for a wide range of species including humans. Although evidence and theoretical predictions indicate that in social species the degree of population level laterality is greater than in solitary ones, the origin of these unilateral biases is not fully understood. It is especially poorly studied in the wild animals. Little is known about the role, which laterality in social interactions plays in natural populations. A number of brain characteristics make cetaceans most suitable for investigation of lateralization in social contacts.) in the greatest breeding aggregation in the White Sea. Here we show that young calves (in 29 individually identified and in over a hundred of individually not recognized mother-calf pairs) swim and rest significantly longer on a mother's right side. Further observations along with the data from other cetaceans indicate that found laterality is a result of the calves' preference to observe their mothers with the left eye, i.e., to analyze the information on a socially significant object in the right brain hemisphere.Data from our and previous work on cetacean laterality suggest that basic brain lateralizations are expressed in the same way in cetaceans and other vertebrates. While the information on social partners and novel objects is analyzed in the right brain hemisphere, the control of feeding behavior is performed by the left brain hemisphere. Continuous unilateral visual contacts of calves to mothers with the left eye may influence social development of the young by activation of the contralateral (right) brain hemisphere, indicating a possible mechanism on how behavioral lateralization may influence species life and welfare. This hypothesis is supported by evidence from other vertebrates

    Biological processes affecting energy efficiency and energy saving in the technology of fermented milk products

    No full text
    The production of dairy products is classified as an energyconsuming industry, which is due to the use of heat exchange processes involving steam as a heat carrier. Indicators of energy efficiency and energy conservation in the production of fermented milk products, including cottage cheese, may sharply decrease due to violations of the fermentation process of raw milk. The intervention of a biological factor – the development of viruses that lyse the cells of lactic acid bacteria, leads to the inhibition or suspension of fermentation. This affects the quality and safety of resulting products and the need to re-implement technological processes that increase energy consumption. Researches on the detection of bacteriophages in the course of technological processes for the production of cottage cheese and yogurt showed the presence of phages at all stages of the technology of fermented milk products. Areas were identified where bacteriophages were detected in large numbers, which could negatively affect the fermentation process of raw milk. The data obtained allowed us to identify critical control points in the technology of cottage cheese and yogurt, where bacteriophages should be monitored to prevent a decrease in energy efficiency and occurrence of additional energy costs

    Circumpolar phylogeography and demographic history of beluga whales reflect past climatic fluctuations

    No full text
    Several Arctic marine mammal species are predicted to be negatively impacted by rapid sea ice loss associated with ongoing ocean warming. However, consequences for Arctic whales remain uncertain. To investigate how Arctic whales responded to past climatic fluctuations, we analysed 206 mitochondrial genomes from beluga whales (Delphinapterus leucas) sampled across their circumpolar range, and four nuclear genomes, covering both the Atlantic and the Pacific Arctic region. We found four well-differentiated mitochondrial lineages, which were established before the onset of the last glacial expansion ~110 thousand years ago. Our findings suggested these lineages diverged in allopatry, reflecting isolation of populations during glacial periods when the Arctic sea-shelf was covered by multiyear sea ice. Subsequent population expansion and secondary contact between the Atlantic and Pacific Oceans shaped the current geographic distribution of lineages, and may have facilitated mitochondrial introgression. Our demographic reconstructions based on both mitochondrial and nuclear genomes showed markedly lower population sizes during the Last Glacial Maximum (LGM) compared to the preceding Eemian and current Holocene interglacial periods. Habitat modelling similarly revealed less suitable habitat during the LGM (glacial) than at present (interglacial). Together, our findings suggested the association between climate, population size, and available habitat in belugas. Forecasts for year 2100 showed that beluga habitat will decrease and shift northwards as oceans continue to warm, putatively leading to population declines in some beluga populations. Finally, we identified vulnerable populations which, if extirpated as a consequence of ocean warming, will lead to a substantial decline of species-wide haplotype diversity

    Circumpolar phylogeography and demographic history of beluga whales reflect past climatic fluctuations

    No full text
    Several Arctic marine mammal species are predicted to be negatively impacted by rapid sea ice loss associated with ongoing ocean warming. However, consequences for Arctic whales remain uncertain. To investigate how Arctic whales responded to past climatic fluctuations, we analysed 206 mitochondrial genomes from beluga whales (Delphinapterus leucas) sampled across their circumpolar range, and four nuclear genomes, covering both the Atlantic and the Pacific Arctic region. We found four well-differentiated mitochondrial lineages, which were established before the onset of the last glacial expansion ~110 thousand years ago. Our findings suggested these lineages diverged in allopatry, reflecting isolation of populations during glacial periods when the Arctic sea-shelf was covered by multiyear sea ice. Subsequent population expansion and secondary contact between the Atlantic and Pacific Oceans shaped the current geographic distribution of lineages, and may have facilitated mitochondrial introgression. Our demographic reconstructions based on both mitochondrial and nuclear genomes showed markedly lower population sizes during the Last Glacial Maximum (LGM) compared to the preceding Eemian and current Holocene interglacial periods. Habitat modelling similarly revealed less suitable habitat during the LGM (glacial) than at present (interglacial). Together, our findings suggested the association between climate, population size, and available habitat in belugas. Forecasts for year 2100 showed that beluga habitat will decrease and shift northwards as oceans continue to warm, putatively leading to population declines in some beluga populations. Finally, we identified vulnerable populations which, if extirpated as a consequence of ocean warming, will lead to a substantial decline of species-wide haplotype diversity
    corecore