6 research outputs found

    An Acute Promyelocytic Leukemia Resistant to All-Trans Retinoic Acid: A Case Report of the ZBTB16::RARa Variant and Review of the Literature

    No full text
    Introduction: Acute promyelocytic leukemia (APL) is characterized by the PML::RARa gene fusion and treatment consists of all-trans retinoic acid (ATRA). Rarely, genetic APL variants have been described which are insensitive to ATRA treatment and are therefore associated with a worse prognosis. Rapid identification of the APL variant is essential to start the correct treatment. Case Presentation: Here, we present a case of a 66-year-old male patient with weight loss and arthralgia. Laboratory results showed an anemia and mild leukocytosis with predominantly monocytes. Bone marrow investigation unexpectedly revealed a t(11;17)(q23;q21). This raised suspicion of an ATRA-resistant APL. By demonstrating the ZBTB16::RARa gene fusion, the diagnosis was confirmed. Conclusion: This case study emphasizes the importance of integrated diagnostics and provides guidance to recognize the ZBTB16::RARa APL, which is the most prevalent ATRA-resistant APL. Furthermore, an overview of other genetic APL variants is presented and how to treat these uncommon diseases in clinical practice

    Distinct bone marrow immunophenotypic features define the splicing factor 3B subunit 1 (SF3B1)-mutant myelodysplastic syndromes subtype

    No full text
    Splicing factor 3B subunit 1 (SF3B1) mutations define a distinct myelodysplastic syndromes (MDS) patient group with a relatively favourable disease course and high response rates to luspatercept. Few data are available on bone marrow phenotype beyond ring sideroblasts in this subgroup of patients with MDS. In the present study, we identified immunophenotypic erythroid, myelomonocyte and progenitor features associated with SF3B1 mutations. In addition, we illustrate that SF3B1-mutation type is associated with distinct immunophenotypic features, and show the impact of co-occurrence of a SF3B1 mutation and a deletion of chromosome 5q on bone marrow immunophenotype. These genotype–phenotype associations and phenotypic subtypes within SF3B1-MDS provide leads that may further refine prognostication and therapeutic strategies for this particular MDS subgroup

    Bimodal expression of potential drug target CLL-1 (CLEC12A) on CD34+ blasts of AML patients

    Get PDF
    Objectives: This study aims to retrospectively assess C-lectin-like molecule 1 (CLL-1) bimodal expression on CD34+ blasts in acute myeloid leukemia (AML) patients (total N = 306) and explore potential CLL-1 bimodal associations with leukemia and patient-specific characteristics. Methods: Flow cytometry assays were performed to assess the deeper immunophenotyping of CLL-1 bimodality. Cytogenetic analysis was performed to characterize the gene mutation on CLL-1-negative subpopulation of CLL-1 bimodal AML samples. Results: The frequency of a bimodal pattern of CLL-1 expression of CD34+ blasts ranged from 8% to 65% in the different cohorts. Bimodal CLL-1 expression was most prevalent in patients with MDS-related AML (P = .011), ELN adverse risk (P = .002), NPM1 wild type (WT, P = .049), FLT3 WT (P = .035), and relatively low percentages of leukemia-associated immunophenotypes (P = .006). Additional immunophenotyping analysis revealed the CLL-1- subpopulation may consist of pre-B cells, immature myeloblasts, and hematopoietic stem cells. Furthermore, (pre)-leukemic mutations were detected in both CLL-1+ and CLL-1- subfractions of bimodal samples (N = 3). Conclusions: C-lectin-like molecule 1 bimodality occurs in about 25% of AML patients and the CLL-1- cell population still contains malignant cells, hence it may potentially limit the effectiveness of CLL-1-targeted therapies and warrant further investigation. Keywords: CD34+ blasts; CLL-1; acute myeloid leukemia; bimodality; bone marrow aspirates; flow cytometry

    Standardization of molecular monitoring of CML: results and recommendations from the European treatment and outcome study

    Get PDF
    Standardized monitoring of BCR::ABL1 mRNA levels is essential for the management of chronic myeloid leukemia (CML) patients. From 2016 to 2021 the European Treatment and Outcome Study for CML (EUTOS) explored the use of secondary, lyophilized cell-based BCR::ABL1 reference panels traceable to the World Health Organization primary reference material to standardize and validate local laboratory tests. Panels were used to assign and validate conversion factors (CFs) to the International Scale and assess the ability of laboratories to assess deep molecular response (DMR). The study also explored aspects of internal quality control. The percentage of EUTOS reference laboratories (n = 50) with CFs validated as optimal or satisfactory increased from 67.5% to 97.6% and 36.4% to 91.7% for ABL1 and GUSB, respectively, during the study period and 98% of laboratories were able to detect MR 4.5 in most samples. Laboratories with unvalidated CFs had a higher coefficient of variation for BCR::ABL1 IS and some laboratories had a limit of blank greater than zero which could affect the accurate reporting of DMR. Our study indicates that secondary reference panels can be used effectively to obtain and validate CFs in a manner equivalent to sample exchange and can also be used to monitor additional aspects of quality assurance. </p
    corecore