23 research outputs found

    Amplified sinus-P-wave analysis predicts outcomes of cryoballoon ablation in patients with persistent and long-standing persistent atrial fibrillation: A multicentre study

    Get PDF
    IntroductionOutcomes of catheter ablation for non-paroxysmal atrial fibrillation (AF) remain suboptimal. Non-invasive stratification of patients based on the presence of atrial cardiomyopathy (ACM) could allow to identify the best responders to pulmonary vein isolation (PVI).MethodsObservational multicentre retrospective study in patients undergoing cryoballoon-PVI for non-paroxysmal AF. The duration of amplified P-wave (APW) was measured from a digitally recorded 12-lead electrocardiogram during the procedure. If patients were in AF, direct-current cardioversion was performed to allow APW measurement in sinus rhythm. An APW cut-off of 150 ms was used to identify patients with significant ACM. We assessed freedom from arrhythmia recurrence at long-term follow-up in patients with APW ≥ 150 ms vs. APW < 150 ms.ResultsWe included 295 patients (mean age 62.3 ± 10.6), of whom 193 (65.4%) suffered from persistent AF and the remaining 102 (34.6%) from long-standing persistent AF. One-hundred-forty-two patients (50.2%) experienced arrhythmia recurrence during a mean follow-up of 793 ± 604 days. Patients with APW ≥ 150 ms had a significantly higher recurrence rate post ablation compared to those with APW < 150 ms (57.0% vs. 41.6%; log-rank p < 0.001). On a multivariable Cox-regression analysis, APW≥150 ms was the only independent predictor of arrhythmia recurrence post ablation (HR 2.03 CI95% 1.28–3.21; p = 0.002).ConclusionAPW duration predicts arrhythmia recurrence post cryoballoon-PVI in persistent and long-standing persistent AF. An APW cut-off of 150 ms allows to identify patients with significant ACM who have worse outcomes post PVI. Analysis of APW represents an easy, non-invasive and highly reproducible diagnostic tool which allows to identify patients who are the most likely to benefit from PVI-only approach

    Globally invariant metabolism but density-diversity mismatch in springtails.

    Get PDF
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning

    Global fine-resolution data on springtail abundance and community structure

    Get PDF
    Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.</p

    Validation of an apnea and hypopnea detection algorithm implemented in implantable cardioverter defibrillators. The AIRLESS study

    No full text
    International audienceDiagnosis of sleep apnea (SA) using simple tools has the potential to improve the efficacy of cardiac implants in the prevention of cardiac arrhythmias. The aim of the present study was to validate a transthoracic impedance sensor for SA diagnosis in patients with cardiac implants. We compared the apnea-hypopnea index (AHI) obtained from polysomnography (AHIPSG) with the AHI obtained from autoscoring algorithms of the ApneaScan implantable impedance respiration sensor (AHIAS) three months after implantation of cardioverter-defibrillator (ICD) or cardiac resynchronization therapy-defibrillator (CRT-D) devices. Twenty-five patients with indications for implantation of ICD or CRT-D (INCEPTA; Boston Scientific) (24 men, 59.9 ± 14.4 years; LVEF 30.3 ± 6.4%; body mass index 25.9 ± 4.2 kg/m²) were included. Mean AHI-PSG was 21.9 ± 19.1 events/hr. A significant correlation was found between AHIPSG and AHIAS especially for the most severe SA (Spearman correlation: 0.71, p < 0.001). Intraclass Correlation Coefficient (was in the expected range: 0.67, 95% CI: 0.39–0.84. The mean bias was 5.4 events per hour (mean AHI: 23.3 ± 14.6 versus 29.7 ± 13.7 for AHI-PSG and AHI-AS, respectively). An optimal cutoff value for the AHIAS at 30 events/h was obtained from the Receiver Operator Characteristic (ROC) curve analysis, which yielded a sensitivity of 100%, a specificity of 80%, PPV = 67%, NPV = 100%. Using an advanced algorithm for autoscoring of transthoracic impedance included in ICDs is reliable to identify SA and has the potential to improve the management of patients with cardiac implants

    Validation of an apnea and hypopnea detection algorithm implemented in implantable cardioverter defibrillators. The AIRLESS study

    No full text
    International audienceDiagnosis of sleep apnea (SA) using simple tools has the potential to improve the efficacy of cardiac implants in the prevention of cardiac arrhythmias. The aim of the present study was to validate a transthoracic impedance sensor for SA diagnosis in patients with cardiac implants. We compared the apnea-hypopnea index (AHI) obtained from polysomnography (AHIPSG) with the AHI obtained from autoscoring algorithms of the ApneaScan implantable impedance respiration sensor (AHIAS) three months after implantation of cardioverter-defibrillator (ICD) or cardiac resynchronization therapy-defibrillator (CRT-D) devices. Twenty-five patients with indications for implantation of ICD or CRT-D (INCEPTA; Boston Scientific) (24 men, 59.9 ± 14.4 years; LVEF 30.3 ± 6.4%; body mass index 25.9 ± 4.2 kg/m²) were included. Mean AHI-PSG was 21.9 ± 19.1 events/hr. A significant correlation was found between AHIPSG and AHIAS especially for the most severe SA (Spearman correlation: 0.71, p < 0.001). Intraclass Correlation Coefficient (was in the expected range: 0.67, 95% CI: 0.39–0.84. The mean bias was 5.4 events per hour (mean AHI: 23.3 ± 14.6 versus 29.7 ± 13.7 for AHI-PSG and AHI-AS, respectively). An optimal cutoff value for the AHIAS at 30 events/h was obtained from the Receiver Operator Characteristic (ROC) curve analysis, which yielded a sensitivity of 100%, a specificity of 80%, PPV = 67%, NPV = 100%. Using an advanced algorithm for autoscoring of transthoracic impedance included in ICDs is reliable to identify SA and has the potential to improve the management of patients with cardiac implants

    Validation of an apnea and hypopnea detection algorithm implemented in implantable cardioverter defibrillators. The AIRLESS study

    No full text
    International audienceDiagnosis of sleep apnea (SA) using simple tools has the potential to improve the efficacy of cardiac implants in the prevention of cardiac arrhythmias. The aim of the present study was to validate a transthoracic impedance sensor for SA diagnosis in patients with cardiac implants. We compared the apnea-hypopnea index (AHI) obtained from polysomnography (AHIPSG) with the AHI obtained from autoscoring algorithms of the ApneaScan implantable impedance respiration sensor (AHIAS) three months after implantation of cardioverter-defibrillator (ICD) or cardiac resynchronization therapy-defibrillator (CRT-D) devices. Twenty-five patients with indications for implantation of ICD or CRT-D (INCEPTA; Boston Scientific) (24 men, 59.9 ± 14.4 years; LVEF 30.3 ± 6.4%; body mass index 25.9 ± 4.2 kg/m²) were included. Mean AHI-PSG was 21.9 ± 19.1 events/hr. A significant correlation was found between AHIPSG and AHIAS especially for the most severe SA (Spearman correlation: 0.71, p < 0.001). Intraclass Correlation Coefficient (was in the expected range: 0.67, 95% CI: 0.39–0.84. The mean bias was 5.4 events per hour (mean AHI: 23.3 ± 14.6 versus 29.7 ± 13.7 for AHI-PSG and AHI-AS, respectively). An optimal cutoff value for the AHIAS at 30 events/h was obtained from the Receiver Operator Characteristic (ROC) curve analysis, which yielded a sensitivity of 100%, a specificity of 80%, PPV = 67%, NPV = 100%. Using an advanced algorithm for autoscoring of transthoracic impedance included in ICDs is reliable to identify SA and has the potential to improve the management of patients with cardiac implants

    Outcomes after cryoballoon ablation of paroxysmal atrial fibrillation with the PolarX or the Arctic Front Advance Pro: a prospective multicentre experience

    No full text
    The aim of this study was to compare procedural efficacy and safety, including 1-year freedom from AF recurrence, between the novel cryoballoon system PolarX (Boston Scientific) and the Arctic Front Advance Pro (AFA-Pro) (Medtronic), in patients with paroxysmal AF undergoing PVI. Methods and results This multicentre prospective observational study included 267 consecutive patients undergoing a first cryoablation procedure for paroxysmal AF (137 PolarX, 130 AFA-Pro). Kaplan-Meier curves with the log-rank test was used to compare the 1year freedom from AF recurrence between both groups. Multivariate Cox model was performed to evaluate whether the type of procedure (PolarX vs. AFA-Pro) had an impact on the occurrence of AF recurrences after adjustment on potentially confounding factors. The PolarX reaches lower temperatures than the AFA-Pro (LSPV 52 ± 5, vs. 59 ± 6; LIPV 49 ± 6 vs. 56 ± 6; right superior pulmonary vein: 49 ± 6 vs. 57 ± 7; right inferior pulmonary vein: 52 ± 6 vs. 59 ± 6; P < 0.0001). A higher rate of transient phrenic nerve palsy was found in patients treated with the PolarX system (15% vs. 7%, P = 0.05). After a mean follow-up of 15 ± 5 months, 20 patients (15%) had recurrences in AFA-Pro group and 27 patients (19%) in PolarX group (P = 0.35). Based on survival analysis, no significant difference was observed between both groups with a 12-month free of recurrence survival of 91.2% (85.1-95.4%) vs. 83.7% (76.0%-89.1%) (log-rank test P = 0.11). In multivariate Cox model hazard ratio of recurrence for PolarX vs. AFA-Pro was not significant [HR = 1.6 (0.9-2.8), P = 0.12]. Conclusion PolarX and AFA-Pro have comparable efficacy and safety profiles for pulmonary veins isolation in paroxysmal atrial fibrillation
    corecore