23 research outputs found

    Euclid: modelling massive neutrinos in cosmology - a code comparison

    Get PDF
    Material outgassing in a vacuum leads to molecular contamination, a well-known problem in spaceflight. Water is the most common contaminant in cryogenic spacecraft, altering numerous properties of optical systems. Too much ice means that Euclid’s calibration requirements cannot be met anymore. Euclid must then be thermally decontaminated, which is a month-long risky operation. We need to understand how ice affects our data to build adequate calibration and survey plans. A comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records. We then review the formation of thin ice films, and find that for Euclid a mix of amorphous and crystalline ices is expected. Their surface topography – and thus optical properties – depend on the competing energetic needs of the substrate-water and the water-water interfaces, and they are hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images of thin ice films. Sophisticated tools exist to compute contamination rates, and we must understand their underlying physical principles and uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of outgassing estimates. We developed a water transport model to compute contamination rates in Euclid, and find agreement with industry estimates within the uncertainties. Tests of the Euclid flight hardware in space simulators did not pick up significant contamination signals, but they were also not geared towards this purpose; our in-flight calibration observations will be much more sensitive. To derive a calibration and decontamination strategy, we need to understand the link between the amount of ice in the optics and its effect on the data. There is little research about this, possibly because other spacecraft can decontaminate more easily, quenching the need for a deeper understanding. In our second paper, we quantify the impact of iced optics on Euclid’s data

    Euclid preparation. XXIX. Water ice in spacecraft part I:The physics of ice formation and contamination

    Get PDF
    Molecular contamination is a well-known problem in space flight. Water is the most common contaminant and alters numerous properties of a cryogenic optical system. Too much ice means that Euclid's calibration requirements and science goals cannot be met. Euclid must then be thermally decontaminated, a long and risky process. We need to understand how iced optics affect the data and when a decontamination is required. This is essential to build adequate calibration and survey plans, yet a comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records, and we review the formation of thin ice films. A mix of amorphous and crystalline ices is expected for Euclid. Their surface topography depends on the competing energetic needs of the substrate-water and the water-water interfaces, and is hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images. Industrial tools exist to estimate contamination, and we must understand their uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of these tools. We developed a water transport model to compute contamination rates in Euclid, and find general agreement with industry estimates. Tests of the Euclid flight hardware in space simulators did not pick up contamination signals; our in-flight calibrations observations will be much more sensitive. We must understand the link between the amount of ice on the optics and its effect on Euclid's data. Little research is available about this link, possibly because other spacecraft can decontaminate easily, quenching the need for a deeper understanding. In our second paper we quantify the various effects of iced optics on spectrophotometric data

    Euclid preparation: XVI. Exploring the ultra-low surface brightness Universe with Euclid /VIS

    Get PDF
    Context. While Euclid is an ESA mission specifically designed to investigate the nature of dark energy and dark matter, the planned unprecedented combination of survey area (∌15Ăą 000 deg2), spatial resolution, low sky-background, and depth also make Euclid an excellent space observatory for the study of the low surface brightness Universe. Scientific exploitation of the extended low surface brightness structures requires dedicated calibration procedures that are yet to be tested. Aims. We investigate the capabilities of Euclid to detect extended low surface brightness structure by identifying and quantifying sky-background sources and stray-light contamination. We test the feasibility of generating sky flat-fields to reduce large-scale residual gradients in order to reveal the extended emission of galaxies observed in the Euclid survey. Methods. We simulated a realistic set of Euclid/VIS observations, taking into account both instrumental and astronomical sources of contamination, including cosmic rays, stray-light, zodiacal light, interstellar medium, and the cosmic infrared background, while simulating the effects of background sources in the field of view. Results. We demonstrate that a combination of calibration lamps, sky flats, and self-calibration would enable recovery of emission at a limiting surface brightness magnitude of ÎŒlim = 29.5-0.27+0.08 mag arcsec-2 (3σ, 10Ăą ×ñ 10 arcsec2) in the Wide Survey, and it would reach regions deeper by 2 mag in the Deep Surveys. Conclusions.Euclid/VIS has the potential to be an excellent low surface brightness observatory. Covering the gap between pixel-To-pixel calibration lamp flats and self-calibration observations for large scales, the application of sky flat-fielding will enhance the sensitivity of the VIS detector at scales larger than 1″, up to the size of the field of view, enabling Euclid to detect extended surface brightness structures below ÎŒlimĂą =Ăą 31 mag arcsec-2 and beyond

    The Euclid mission design

    Get PDF
    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre

    Euclid preparation. XXIX. Water ice in spacecraft part I: The physics of ice formation and contamination

    Get PDF
    Molecular contamination is a well-known problem in space flight. Water is the most common contaminant and alters numerous properties of a cryogenic optical system. Too much ice means that Euclid's calibration requirements and science goals cannot be met. Euclid must then be thermally decontaminated, a long and risky process. We need to understand how iced optics affect the data and when a decontamination is required. This is essential to build adequate calibration and survey plans, yet a comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records, and we review the formation of thin ice films. A mix of amorphous and crystalline ices is expected for Euclid. Their surface topography depends on the competing energetic needs of the substrate-water and the water-water interfaces, and is hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images. Industrial tools exist to estimate contamination, and we must understand their uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of these tools. We developed a water transport model to compute contamination rates in Euclid, and find general agreement with industry estimates. Tests of the Euclid flight hardware in space simulators did not pick up contamination signals; our in-flight calibrations observations will be much more sensitive. We must understand the link between the amount of ice on the optics and its effect on Euclid's data. Little research is available about this link, possibly because other spacecraft can decontaminate easily, quenching the need for a deeper understanding. In our second paper we quantify the various effects of iced optics on spectrophotometric data.Comment: 35 pages, 22 figures, A&A in press. Changes to previous version: language edits, added Z. Bolag as author in the arxiv PDF (was listed in the ASCII author list and in the journal PDF, but not in the arxiv PDF). This version is identical to the journal versio

    Euclid preparation: I. the Euclid Wide Survey

    Get PDF
    Euclid is a mission of the European Space Agency that is designed to constrain the properties of dark energy and gravity via weak gravitational lensing and galaxy clustering. It will carry out a wide area imaging and spectroscopy survey (the Euclid Wide Survey: EWS) in visible and near-infrared bands, covering approximately 15 000 deg2 of extragalactic sky in six years. The wide-field telescope and instruments are optimised for pristine point spread function and reduced stray light, producing very crisp images. This paper presents the building of the Euclid reference survey: The sequence of pointings of EWS, deep fields, and calibration fields, as well as spacecraft movements followed by Euclid as it operates in a step-And-stare mode from its orbit around the Lagrange point L2. Each EWS pointing has four dithered frames; we simulated the dither pattern at the pixel level to analyse the effective coverage. We used up-To-date models for the sky background to define the Euclid region-of-interest (RoI). The building of the reference survey is highly constrained from calibration cadences, spacecraft constraints, and background levels; synergies with ground-based coverage were also considered. Via purposely built software, we first generated a schedule for the calibrations and deep fields observations. On a second stage, the RoI was tiled and scheduled with EWS observations, using an algorithm optimised to prioritise the best sky areas, produce a compact coverage, and ensure thermal stability. The result is the optimised reference survey RSD-2021A, which fulfils all constraints and is a good proxy for the final solution. The current EWS covers ∌14.500 deg2. The limiting AB magnitudes (5ρpoint-like source) achieved in its footprint are estimated to be 26.2 (visible band IE) and 24.5 (for near infrared bands YE, JE, HE); for spectroscopy, the Hα line flux limit is 2.10-16 erg-1 cm-2 s-1 at 1600 nm; and for diffuse emission, the surface brightness limits are 29.8 (visible band) and 28.4 (near infrared bands) mag arcsec-2

    Euclid preparation: XVI. Exploring the ultra-low surface brightness Universe with Euclid/VIS

    Get PDF
    Context While Euclid is an ESA mission specifically designed to investigate the nature of dark energy and dark matter, the planned unprecedented combination of survey area (∌15 000 deg2), spatial resolution, low sky-background, and depth also make Euclid an excellent space observatory for the study of the low surface brightness Universe. Scientific exploitation of the extended low surface brightness structures requires dedicated calibration procedures that are yet to be tested. Aims We investigate the capabilities of Euclid to detect extended low surface brightness structure by identifying and quantifying sky-background sources and stray-light contamination. We test the feasibility of generating sky flat-fields to reduce large-scale residual gradients in order to reveal the extended emission of galaxies observed in the Euclid survey. Methods We simulated a realistic set of Euclid/VIS observations, taking into account both instrumental and astronomical sources of contamination, including cosmic rays, stray-light, zodiacal light, interstellar medium, and the cosmic infrared background, while simulating the effects of background sources in the field of view. Results We demonstrate that a combination of calibration lamps, sky flats, and self-calibration would enable recovery of emission at a limiting surface brightness magnitude of ÎŒlim = 29.5-0.2+0.08 mag arcsec-2 (3σ, 10 × 10 arcsec2) in the Wide Survey, and it would reach regions deeper by 2 mag in the Deep Surveys. Conclusions Euclid/VIS has the potential to be an excellent low surface brightness observatory. Covering the gap between pixel-To-pixel calibration lamp flats and self-calibration observations for large scales, the application of sky flat-fielding will enhance the sensitivity of the VIS detector at scales larger than 1″, up to the size of the field of view, enabling Euclid to detect extended surface brightness structures below ÎŒlim = 31 mag arcsec-2 and beyond

    Metamaterials for optical and photonic applications for space: Preliminary results

    No full text
    The European Space Agency (ESA) in the frame of its General Study Program (GSP) has started to investigate the opportunity of using metamaterials in space applications. In that context, ESA has initiated two GSP activities which main objectives are 1) to identify the metamaterials and associated optical properties which could be used to improve in the future the performances of optical payloads in space missions, 2) to design metamaterial based devices addressing specific needs in space applications. The range of functions for metamaterials to be investigated is wide (spectral dispersion, polarisation control, light absorption, straylight control...) and so is the required spectral range, from 0.4m to 15m. In the frame of these activities several applications have been selected and the designs of metamaterial based devices are proposed and their performances assessed by simulations

    Measurement and modelling of the chromatic dependence of a reflected wavefront on the Euclid space telescope dichroic mirror

    No full text
    International audienced is the second M-class mission of ESA’s Cosmic Vision Program. It implements a space telescope to be launched at L2. The objective is to characterize the dynamics of the early Universe by using two instruments: the high definition camera VIS (visible instrument) and the spectrophotometer NISP (Near Infrared Spectrometer and Photometer). Light entering Euclid is either reflected toward VIS in the visible band, or transmitted to NISP in the infrared band by a dichroic mirror. In order to guarantee the quality of scientific data delivered by the mission, the knowledge of any chromatic dependence of the optical payload’s Point-Spread function (PSF) is critical. However, previous works showed that complex coatings, such as high-performance dichroic coating, are likely to induce high chromatic variations in reflection, either as a chromatic “Wave-Front-error” (WFE) and/or as inhomogeneous reflectance profile (R), both affecting PSF morphology. In-depth knowledge of the reflected wavefront by the Euclid Dichroic is then necessary in order to calibrate the in-flight Euclid Observations. This work focuses on two aspects. On the one hand, we present an experimental campaign to measure the dichroic WFE and R at any wavelength, incidence, and polarization state, with an extreme precision. This metrology work implements a bench funded by ESA, designed by Imagine Optic Company, and commissioned at LMA. On the other hand we build a numerical model of the dichroic based on these on-ground measurements. By reproducing the experimental optical properties of the dichroic mirror, we ensure the subjacent thinfilms physics at play is well understood, ultimately providing adequate inputs for the in-flight calibration of Euclid with a suitable level of accuracy.© COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE

    The Euclid VIS CCD detector design, development, and programme status

    No full text
    The focal plane array of the Euclid VIS instrument comprises 36 large area, back-illuminated, red-enhanced CCD detectors (designated CCD 273). These CCDs were specified by the Euclid VIS instrument team in close collaboration with ESA and e2v technologies. Prototypes were fabricated and tested through an ESA pre-development activity and the contract to qualify and manufacture flight CCDs is now underway. This paper describes the CCD requirements, the design (and design drivers) for the CCD and package, the current status of the CCD production programme and a summary of key performance measurements
    corecore