56 research outputs found

    Parallel Connected VSI Inverter using Multi-carrier based Sinusoidal PWM Technique

    Get PDF
    This paper explains the simulation and modelling of Parallel operation of VSI inverter using multi-carrier based PWM technique. By this proposed method three level inverter output voltages generated instead of using multilevel inverter or two level dual VSI inverter. This system employs single dc voltage source, which gives supply to both VSI inverter by using parallel connection. The multi-carrier based pulse width modulation technique affianced to control the inverter power switches. The proposed system offers improved output voltage, better current control and reduced harmonic distortion. The simulation results of this proposed system was verified using matlab/simulink

    Does CD4+CD25+foxp3+ cell (Treg) and IL-10 profile determine susceptibility to immune reconstitution inflammatory syndrome (IRIS) in HIV disease?

    Get PDF
    HIV-specific T-lymphocyte responses that underlie IRIS are incomplete and largely remain hypothetical. Of the several mechanisms presented by the host to control host immunological damage, Treg cells are believed to play a critical role. Using the available experimental evidence, it is proposed that enormous synthesis of conventional FoxP3- Th cells (responsive) often renders subjects inherently vulnerable to IRIS, whereas that of natural FoxP3+ Treg cell synthesis predominate among subjects that may not progress to IRIS. We also propose that IRIS non-developers generate precursor T-cells with a high avidity to generate CD4+CD25+FoxP3+ Tregs whereas IRIS developers generate T-cells of intermediate avidity yielding Th0 cells and effector T-cells to mediate the generation of proinflammatory cytokines in response to cell-signaling factors (IL-2, IL-6 etc.). Researchers have shown that IL-10 Tregs (along with TGF-β, a known anti-inflammatory cytokine) limit immune responses against microbial antigens in addition to effectively controlling HIV replication, the prime objective of HAART. Although certain technical limitations are described herein, we advocate measures to test the role of Tregs in IRIS

    Molecular signatures of T-cell inhibition in HIV-1 infection

    Get PDF

    Tfh1 Cells in Germinal Centers During Chronic HIV/SIV Infection

    No full text
    T follicular helper CD4 cells (Tfh) are essential for the development and maintenance of germinal center (GC) reactions, a critical process that promotes the generation of long-lived high affinity humoral immunity. It is becoming increasingly evident that GC-Tfh cells are heterogeneous in nature with some cellular characteristics associated with a Th1, Th2, and Th17 phenotype. Emerging studies suggest that GC-Tfh cells are directed to differentiate into distinct phenotypes during chronic HIV/SIV infection and these changes in GC-Tfh cells can greatly impact the B cell response and subclass of antibodies generated. Studies in HIV-infected humans have shown that certain Tfh phenotypes are associated with the generation of broadly neutralizing antibody responses. Moreover, the susceptibility of particular GC-Tfh subsets to HIV infection within the secondary lymphoid sites can also impact GC-Tfh/B cell interactions. In this review, we discuss the recent advances that show Tfh heterogeneity during chronic HIV/SIV infection. In particular, we will discuss the dynamics of GC-Tfh cells, their altered differentiation state and function, and their impact on B cell responses during HIV/SIV infection. In addition, we will also discuss the potential role of a recently described novel subset of follicular homing CXCR5+ CD8 T cells (Tfc) and their importance in contributing to control of chronic HIV/SIV infection. A better understanding of the mechanistic role of follicular homing CD4 and CD8 T cells during HIV/SIV infection will aid in the design of vaccines and therapeutic strategies to prevent and treat HIV/AIDS
    corecore