268 research outputs found

    Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE

    Get PDF
    We use monthly measurements of time-variable gravity from the GRACE (Gravity Recovery and Climate Experiment) satellite mission to quantify changes in terrestrial water storage (TWS) in the Lena river basin, Eurasia, during the period April 2002 to September 2010. We estimate a TWS increase of 32 ± 10 km3/yr for the entire basin, equivalent to an increase in water thickness of 1.3 ± 0.4 cm/yr over a basin of 2.4 million km2. We compare TWS estimates from GRACE with time series of precipitation (P) minus evapotranspiration (ET) from ERA-Interim reanalysis minus observational river discharge (R). We find an excellent agreement in annual and inter-annual variability between the two time series. Furthermore, we find that a bias of −20 ± 10% in P-ET is sufficient to effectively close the water budget with GRACE. When we account for this bias, the time series of cumulative TWS from GRACE and climatological data agree to within ±3.8 cm of water thickness, or ±9% of the mean annual P. The TWS increase is not uniform across the river basin and exhibits a peak, over an area of 502,400 km2, centered at 118.5°E, 62.5°N, and underlain by discontinuous permafrost. In this region, we attribute the observed TWS increase of 68 ± 19 km3 to an increase in subsurface water storage. This large subsurface water signal will have a significant impact on the terrestrial hydrology of the region, including increased baseflow and alteration of seasonal runoff

    Potential for Southern Hemisphere climate surprises

    Get PDF
    Climate model results suggest that future climate change in Antarctica will be accompanied by continued strengthening and poleward contraction of the Southern Ocean westerly wind belt. Paleoclimate records suggest past changes in the westerly winds can be abrupt and that healing of the Antarctic ozone hole could lead to poleward contraction of the westerlies and increased meridional atmospheric transport of warm air regionally into Antarctica. An abrupt shift to more meridional circulation could lead to notable changes in moisture availability for extra-Antarctic regions, increased Antarctic ice sheet disintegration and more rapid sea-level rise

    Acceleration of Greenland ice mass loss in spring 2004

    Full text link
    In 2001 the Intergovernmental Panel on Climate Change projected the contribution to sea level rise from the Greenland ice sheet to be between -0.02 and +0.09 m from 1990 to 2100 (ref. 1). However, recent work has suggested that the ice sheet responds more quickly to climate perturbations than previously thought, particularly near the coast. Here we use a satellite gravity survey by the Gravity Recovery and Climate Experiment (GRACE) conducted from April 2002 to April 2006 to provide an independent estimate of the contribution of Greenland ice mass loss to sea level change. We detect an ice mass loss of 248 +/- 36 km3 yr(-1), equivalent to a global sea level rise of 0.5 +/- 0.1 mm yr(-1). The rate of ice loss increased by 250 per cent between the periods April 2002 to April 2004 and May 2004 to April 2006, almost entirely due to accelerated rates of ice loss in southern Greenland; the rate of mass loss in north Greenland was almost constant. Continued monitoring will be needed to identify any future changes in the rate of ice loss in Greenland

    Continental mass change from GRACE over 2002-2011 and its impact on sea level

    Get PDF
    Present-day continental mass variation as observed by space gravimetry reveals secular mass decline and accumulation. Whereas the former contributes to sea-level rise, the latter results in sea-level fall. As such, consideration of mass accumulation (rather than focussing solely on mass loss) is important for reliable overall estimates of sea-level change. Using data from the Gravity Recovery And Climate Experiment satellite mission, we quantify mass-change trends in 19 continental areas that exhibit a dominant signal. The integrated mass change within these regions is representative of the variation over the whole land areas. During the integer 9-year period of May 2002 to April 2011, GIA-adjusted mass gain and mass loss in these areas contributed, on average, to −(0.7 ± 0.4) mm/year of sea-level fall and + (1.8 ± 0.2) mm/year of sea-level rise; the net effect was + (1.1 ± 0.6) mm/year. Ice melting over Greenland, Iceland, Svalbard, the Canadian Arctic archipelago, Antarctica, Alaska and Patagonia was responsible for + (1.4±0.2) mm/year of the total balance. Hence, land-water mass accumulation compensated about 20 % of the impact of ice-melt water influx to the oceans. In order to assess the impact of geocentre motion, we converted geocentre coordinates derived from satellite laser ranging (SLR) to degree-one geopotential coefficients. We found geocentre motion to introduce small biases to mass-change and sea-level change estimates; its overall effect is + (0.1 ± 0.1) mm/year. This value, however, should be taken with care owing to questionable reliability of secular trends in SLR-derived geocentre coordinates

    The 1979-2005 Greenland ice sheet melt extent from passive microwave data using an improved version of the melt retrieval XPGR algorithm

    Full text link
    Analysis of passive microwave satellite observations over the Greenland ice sheet reveals a significant increase in surface melt over the period 1979-2005. Since 1979, the total melt area was found to have increased +1.22 x 10ˆ7 kmˆ2. An improved version of the cross-polarized gradient ratio (XPGR) technique is used to identify the melt from the brightness temperatures. The improvements in the melt retrieval XPGR algorithm as well as the surface melt acceleration are discussed with results from a coupled atmosphere-snow regional climate model. From 1979 to 2005, the ablation period increases everywhere over the melt zone except in the regions where the model simulates an increased summer snowfall. Indeed, more snowfall in summer decreases the liquid water content of the snowpack, raises the albedo and therefore reduces the melt. Finally, this melt acceleration over the Greenland ice sheet is highly correlated with both Greenland and global warming suggesting a continuing surface melt increase in the future.Peer reviewe

    Greenland Ice sheet [in "State of the Climate in 2016"]

    Full text link
    peer reviewedThe mass of the Greenland Ice Sheet, which has the capacity to contribute ~7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record

    Greenland Ice sheet [in "State of the Climate in 2015"]

    Full text link
    peer reviewedThe Greenland Ice Sheet, with the capacity to contribute ~7 m to sea level rise, experienced melting over more than 50% of its surface for the first time since the record melt of 2012

    A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change

    Get PDF
    The evolution of ocean temperature measurement systems is presented with a focus on the development and accuracy of two critical devices in use today (expendable bathythermographs and conductivity‐temperature‐depth instruments used on Argo floats). A detailed discussion of the accuracy of these devices and a projection of the future of ocean temperature measurements are provided. The accuracy of ocean temperature measurements is discussed in detail in the context of ocean heat content, Earth's energy imbalance, and thermosteric sea level rise. Up‐to‐date estimates are provided for these three important quantities. The total energy imbalance at the top of atmosphere is best assessed by taking an inventory of changes in energy storage. The main storage is in the ocean, the latest values of which are presented. Furthermore, despite differences in measurement methods and analysis techniques, multiple studies show that there has been a multidecadal increase in the heat content of both the upper and deep ocean regions, which reflects the impact of anthropogenic warming. With respect to sea level rise, mutually reinforcing information from tide gauges and radar altimetry shows that presently, sea level is rising at approximately 3 mm yr−1 with contributions from both thermal expansion and mass accumulation from ice melt. The latest data for thermal expansion sea level rise are included here and analyzed

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing

    Full text link
    The non-frozen (NF) season duration strongly influences the northern carbon cycle where frozen (FR) temperatures are a major constraint to biological processes. The landscape freeze-thaw (FT) signal from satellite microwave remote sensing provides a surrogate measure of FR temperature constraints to ecosystem productivity, trace gas exchange, and surface water mobility. We analysed a new global satellite data record of daily landscape FT dynamics derived from temporal classification of overlapping SMMR and SSM/I 37 GHz frequency brightness temperatures (Tb). The FT record was used to quantify regional patterns, annual variability, and trends in the NF season over northern (≥45°N) vegetated land areas. The ecological significance of these changes was evaluated against satellite normalized difference vegetation index (NDVI) anomalies, estimated moisture and temperature constraints to productivity determined from meteorological reanalysis, and atmospheric CO2 records. The FT record shows a lengthening (2.4 days decade-1; p &lt; 0.005) mean annual NF season trend (1979-2010) for the high northern latitudes that is 26% larger than the Northern Hemisphere trend. The NDVI summer growth response to these changes is spatially complex and coincides with local dominance of cold temperature or moisture constraints to productivity. Longer NF seasons are predominantly enhancing productivity in cold temperature-constrained areas, whereas these effects are reduced or reversed in more moisture-constrained areas. Longer NF seasons also increase the atmospheric CO2 seasonal amplitude by enhancing both regional carbon uptake and emissions. We find that cold temperature constraints to northern growing seasons are relaxing, whereas potential benefits for productivity and carbon sink activity are becoming more dependent on the terrestrial water balance and supply of plant-available moisture needed to meet additional water use demands under a warming climate. © 2014 Taylor &amp; Francis
    corecore