662 research outputs found
The Case for âGoodâ Legal Representation: Is it worth fighting for?
The legal representation of patients detained under the Mental Health Act 1983 (the Act) by way of public funding is very recent. Prior to the Act legal representation was not commonplace and was not seen as desirable. A Royal Commission report in 1957 commented that âAs the proceedings on applications to Mental health Review Tribunals will usually be informal and neither the patient nor the hospital or local authority will usually need to be legally represented...â5 It was the Legal Aid Act 1974 that granted public funding for a solicitor to prepare a case for a Mental health Review Tribunal under the Legal Advice Scheme (the Green Form, remember those uncomplicated days!). This was means-tested but did not grant funding for actual representation. Public funding for representation at the hearing was only granted on 1st December 1982 under âAssistance by Way of Representationâ. A time span up until todayâs date of only 28 years
Haptoglobin-hemoglobin receptor independent killing of African trypanosomes by human serum and trypanosome lytic factors
The haptoglobin-hemoglobin receptor (HpHbR) of African trypanosomes plays a critical role in human innate immunity against these parasites. Localized to the flagellar pocket of the veterinary pathogen Trypanosoma brucei brucei this receptor binds Trypanosome Lytic Factor-1 (TLF-1), a subclass of human high-density lipoprotein (HDL) facilitating endocytosis, lysosomal trafficking and subsequent killing. Recently, we found that group 1 Trypanosoma brucei gambiense does not express a functional HpHbR. We now show that loss of the TbbHpHbR reduces the susceptibility of T. b. brucei to human serum and TLF-1 by 100- and 10,000-fold, respectively. The relatively high concentrations of human serum and TLF-1 needed to kill trypanosomes lacking the HpHbR indicates that high affinity TbbHpHbR binding enhances the cytotoxicity; however, in the absence of TbbHpHbR, other receptors or fluid phase endocytosis are sufficient to provide some level of susceptibility. Human serum contains a second innate immune factor, TLF-2, that has been suggested to kill trypanosomes independently of the TbbHpHbR. We found that T. b. brucei killing by TLF-2 was reduced in TbbHpHbR-deficient cells but to a lesser extent than TLF-1. This suggests that both TLF-1 and TLF-2 can be taken up via the TbbHpHbR but that alternative pathways exist for the uptake of these toxins. Together the findings reported here extend our previously published studies and suggest that group 1 T. b. gambiense has evolved multiple mechanisms to avoid killing by trypanolytic human serum factors
Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes
<p><b>Background</b></p>
<p>The evolutionarily ancient parasite, Trypanosoma brucei, is unusual in that the majority of its genes are regulated post-transcriptionally, leading to the suggestion that transcript abundance of most genes does not vary significantly between different life cycle stages despite the fact that the parasite undergoes substantial cellular remodelling and metabolic changes throughout its complex life cycle. To investigate this in the clinically relevant sub-species, Trypanosoma brucei gambiense, which is the causative agent of the fatal human disease African sleeping sickness, we have compared the transcriptome of two different life cycle stages, the potentially human-infective bloodstream forms with the non-human-infective procyclic stage using digital gene expression (DGE) analysis.</p>
<p><b>Results</b></p>
<p>Over eleven million unique tags were generated, producing expression data for 7360 genes, covering 81% of the genes in the genome. Compared to microarray analysis of the related T. b. brucei parasite, approximately 10 times more genes with a 2.5-fold change in expression levels were detected. The transcriptome analysis revealed the existence of several differentially expressed gene clusters within the genome, indicating that contiguous genes, presumably from the same polycistronic unit, are co-regulated either at the level of transcription or transcript stability.</p>
<p><b>Conclusions</b></p>
<p>DGE analysis is extremely sensitive for detecting gene expression differences, revealing firstly that a far greater number of genes are stage-regulated than had previously been identified and secondly and more importantly, this analysis has revealed the existence of several differentially expressed clusters of genes present on what appears to be the same polycistronic units, a phenomenon which had not previously been observed in microarray studies. These differentially regulated clusters of genes are in addition to the previously identified RNA polymerase I polycistronic units of variant surface glycoproteins and procyclin expression sites, which encode the major surface proteins of the parasite. This raises a number of questions regarding the function and regulation of the gene clusters that clearly warrant further study.</p>
Horseradish and soybean peroxidases: comparable tools for alternative niches?
Horseradish and soybean peroxidases (HRP and SBP, respectively) are useful biotechnological tools. HRP is often termed the classical plant heme peroxidase and although it has been studied for decades, our understanding has deepened since its cloning and subsequent expression, enabling numerous mutational and protein engineering studies. SBP, however, has been neglected until recently, despite offering a real alternative to HRP: SBP actually outperforms HRP in terms of stability and is now used in numerous biotechnological applications, including biosensors. Review of both is timely. This article summarizes and discusses the main insights into the structure and mechanism of HRP, with special emphasis on HRP mutagenesis, and outlines its use in a variety of applications. It also reviews the current knowledge and applications to date of SBP, particularly biosensors. The final paragraphs speculate on the future of plant heme-based peroxidases, with probable trends outlined and explored
Nor-hopanes from Zanha africana root bark with toxicity to bruchid beetles
Zanha africana (Radlk.) Exell (Sapindaceae) root bark is used by farmers throughout sub-Saharan Africa to protect stored grain from bruchid beetles, such as Callosobruchus maculatus. Chloroform, methanol and water extracts of Z. africana root bark inhibited oviposition and caused significantly higher mortality of C. maculatus at a rate of application equivalent to that applied by farmers compared to control insects. The chloroform extract contained nor-hopanes rarely found in plants of which seven were isolated, one of which was previously known. Two of the most abundant nor-hopanes 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21ιH-24-norhopa-4(23),22(29)-diene and 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene were toxic to and reduced oviposition of C. maculatus in a dose dependent manner. Z. africana root bark is rich in insecticidal compounds that account for its effective use by smallholder farmers as an alternative to conventional insecticides
Responsibility as professional leadership and decision making: Interviews with non-medical Responsible Clinicians
Background
Responsible Clinicians are professionals who are primarily accountable for the care and treatment of patients detained under the Mental Health Act, 1983 in England and Wales. The role has only been taken up by under 100 nurses and psychologists since 2007. The aim of this study was to explore the experiences of non-medical Responsible Clinicians, to inform our understanding of interprofessional dynamics and professional identity in contemporary mental healthcare.
Methods
A qualitative study comprising thematic analysis of interviews with twelve non-medical Responsible Clinicians.
Results
A major theme of âInterpretations of responsibilityâ emerged, with two sub themes: âResponsibility as leadership âand âResponsibility as decision makingâ. Taking on the role had implications beyond the care of specific patients. Participants saw themselves as having the power to shape their team and service whilst exercising their authority to make difficult decisions about risk and restrictions.
Conclusions
More widespread adoption of the non-medical Responsible Clinician role should not be seen solely as a solution to workforce shortages or lack of opportunities for professional advancement. Consultant nurses and psychologists who take on this role are seising the opportunity to steer service developments more widely, influencing team dynamics and perceptions of accountability
Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array
BACKGROUND: Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST) that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. RESULTS: We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported) transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic predictions of alternative splicing in cancer. CONCLUSION: Differential expression of high confidence transcripts correlated extremely well with known cancer genes and pathways, suggesting that the more speculative transcripts, largely based solely on computational prediction and mostly with no previous annotation, might be novel targets in colon cancer. Five of the identified splicing events affect mediators of cytoskeletal organization (ACTN1, VCL, CALD1, CTTN, TPM1), two affect extracellular matrix proteins (FN1, COL6A3) and another participates in integrin signaling (SLC3A2). Altogether they form a pattern of colon-cancer specific alterations that may particularly impact cell motility
A Primate APOL1 Variant That Kills Trypanosoma brucei gambiense
Humans are protected against infection from most African trypanosomes by lipoprotein complexes present in serum that contain the trypanolytic pore-forming protein, Apolipoprotein L1 (APOL1). The human-infective trypanosomes, Trypanosoma brucei rhodesiense in East Africa and T. b. gambiense in West Africa have separately evolved mechanisms that allow them to resist APOL1-mediated lysis and cause human African trypanosomiasis, or sleeping sickness, in man. Recently, APOL1 variants were identified from a subset of Old World monkeys, that are able to lyse East African T. b. rhodesiense, by virtue of C-terminal polymorphisms in the APOL1 protein that hinder that parasiteâs resistance mechanism. Such variants have been proposed as candidates for developing therapeutic alternatives to the unsatisfactory anti-trypanosomal drugs currently in use. Here we demonstrate the in vitro lytic ability of serum and purified recombinant protein of an APOL1 ortholog from the West African Guinea baboon (Papio papio), which is able to lyse examples of all sub-species of T. brucei including T. b. gambiense group 1 parasites, the most common agent of human African trypanosomiasis. The identification of a variant of APOL1 with trypanolytic ability for both human-infective T. brucei sub-species could be a candidate for universal APOL1-based therapeutic strategies, targeted against all pathogenic African trypanosomes
- âŚ