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1 deceased 

Zanha africana (Radlk.) Exell (Sapindaceae) root bark is used by farmers throughout sub-Saharan 

Africa to protect stored grain from bruchid beetles, such as Callosobruchus maculatus.  

Chloroform, methanol and water extracts of Z. africana root bark inhibited oviposition and caused 

significantly higher mortality of C. maculatus at a rate of application equivalent to that applied by 

farmers compared to control insects.  The chloroform extract contained nor-hopanes rarely found 

in plants of which seven were isolated, one of which was previously known.  Two of the most 

abundant nor-hopanes 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa-

4(23),22(29)-diene and 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-

diene were toxic to and reduced oviposition of C. maculatus in a dose dependent manner.  Z. 

africana root bark is rich in insecticidal compounds that account for its effective use by 

smallholder farmers as an alternative to conventional insecticides. 
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1. Introduction 

 

 Zanha africana (Radlk.) Exell is a medium sized tree belonging to the Sapindaceae (Flora 

Zambesiaca) and occurs in the African savannah and distributed from Kenya southwards through 

Tanzania, Malawi, Mozambique, Zambia, Zimbabwe, southern Angola and Namibia (Beentje, 

1994; Swanepoel, 2013).  Zanha species have cultural importance across the range.  For example, 

Z. golunguensis is a source of medicine (Bruschi et al., 2011) with activity reported in bark against 

trypanosomiasis (Nibret et al., 2010), bacterial pathogens (Kambizi and Afolayan, 2001) and fungi 

(Fabry et al., 1996), and also has anti-inflammatory activity (Recio et al., 1995). Z. africana is rich 

in oleanane type saponins based on the zanhagenic triterpene skeleton (Kapundu et al., 1992) 

including zanhasaponins A, B and C isolated from the root bark which reportedly account for anti-

inflammatory properties (Cuellar et al., 1997a; Cuellar et al., 1997b).  More recently, the 

structurally related compounds zanhasaponins D-H have also been reported from root bark of 

Zanha golunguensis, the only other species in the genus growing in Africa (Lavaud et al., 2015). 

 

Smallholder farmers in Tanzania use the root bark of Z. africana to protect stored grain from 

stored product pests (Mkoga et al., 2004) by pounding the stripped bark to a powder and admixing 

with their grain.  The potential livelihood impact of wild, locally available plants in pest control is 

compelling if they can be sustainably sourced, particularly for poorly-resourced small-scale 

farmers (Grzywacz et al., 2014; Isman, 2006). The aim of this study was to analyse the chemistry 

of Z. africana root bark and identify components that might be responsible for any biological 

activity against insects.  Understanding the chemical basis of activity in pesticidal plants provides 

tools necessary to explain temporal and spatial variation in efficacy (Belmain et al., 2012), inform 
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about the occurrence of chemotypes (Stevenson et al., 2012), and enable the development of 

optimized field application (Stevenson et al., 2009). 

In this paper, the identity of seven nor-hopanes from the root bark of Zanha africana was 

determined of which six are reported for the first time. These components explain, at least in part, 

the bioefficacy of the root bark of Z. africana in protecting stored cowpeas from bruchid damage 

in smallholder farm stores. 

 

2. Results and Discussion 

2.1. Identification of nor-hopanes in Z. africana  

The chloroform extract of Z. africana root bark was shown to be toxic to a bruchid beetle, 

Callosobruchus maculatus (L.), in bioassays described in detail below (Sections 2.2 and 3.1).  This 

extract was analysed using LC-UV-MS/MS and indicated the presence of numerous non-polar 

peaks with similar UV spectra. Seven compounds, 1-7 (Figure 1), were isolated using semi-

preparative HPLC and characterized using spectroscopic techniques.   

Full assignment of the 1H and 13C NMR spectra of 1 in CDCl3 was obtained using COSY, 

HSQC and HMBC data (Tables 1 and 2). The 13C NMR assignments of 1 showed a good match 

with those for 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa-4(23),22(29)-

diene (Chávez et al., 1997). Good agreement was also found between the 1H NMR assignments 

and a partial dataset given by the latter authors, with the exception of the assignments of H-9 and 

H-13 which required revision (Table 1). A second NMR dataset for 1 was acquired in MeOH-d4 

because of the improved resolution of the multiplet structure of several key resonances including 

H-3 and H-6. A series of 1D site selective ROE experiments indicated that 1 had the same relative 

configuration as the published structure (Figure 1). In particular, the α-configuration of H-21 was 

confirmed by an ROE correlation with 28-Me. Other key ROE correlations were between 28-Me 
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and 27-Me, 27-Me and H-7 (confirming the β-configuration of the 7-(4-hydroxybenzoyl)oxy 

group), H-7 and H-5, H-6 and H-5 (confirming the β-configuration of the 6-OH group), H-5 and 

H-3 (confirming the β-configuration of the 3-OH group) and 25-Me and 26-Me. The optical 

rotation for 1 of αD = +45.7 (c 0.54, MeOH) had the same sign as the literature value of αD = +10 

(c 0.79, CHCl3).  

The molecular formula of 2 established by HIRESIMS as C36H50O6 differed from that of 1 by 

the inclusion of one additional oxygen atom. Full assignment of the 1H and 13C NMR spectra of 2 

was carried out in both CDCl3 and MeOH-d4. Comparison of the latter with the analogous 

assignments for 1 indicated that 2 possessed an oxygenated methine in place of a methylene group. 

In the COSY spectrum (CDCl3), the oxygenated methine (δH 4.30) correlated with H-9 (δH 1.65) 

and 12-CH2 (δH 1.81 and 1.59). Similarly, in the HMBC spectrum acquired in CDCl3, correlations 

were observed from δH 4.30 to C-8 (δC 48.4), C-9 (δC 54.2), and C-10 (δC 39.8). The additional 

hydroxyl group was therefore located at C-11. NOE connectivities observed between both 25-Me 

and 26-Me with H-11 indicated that this hydrogen atom was β-oriented. The significant downfield 

shift (Δδ +1.06 ppm) experienced by H-1β (δH 2.89 in CDCl3) was also consistent with an α-

configuration for 11-OH (Isaka et al., 2011). Compound 2 was therefore 3β,6β,11α-trihydroxy-7β-

[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa-4(23),22(29)-diene. 

 The 1H NMR spectrum of 3 was similar to that of 2 with the exception that H-11 (δH 5.48 in 

MeOH-d4) showed a significant downfield shift (Δδ +1.28 ppm) and a 3H singlet at δH 2.03 was 

observed corresponding to an acetyl group (δC 172.1 and 22.1). In the HMBC spectrum, H-11 

correlated with the acetyl carbonyl group at δC 172.1 and also with C-9 (δC 52.9). In the COSY 

spectrum, H-11 correlated with both H-9 and 12-CH2 as expected. The magnitude of the coupling 

constant J9,11 of 11.3 Hz indicated a diaxial relationship between these hydrogen atoms such that 



 6 

H-11 was β-oriented. Compound 3 was therefore 11α-acetoxy-3β,6β-dihydroxy-7β-[(4-

hydroxybenzoyl)oxy]-21αH-24-norhopa-4(23),22(29)-diene. 

 The main difference between the 1H NMR spectra of 4 and 2 was that the former contained 

resonances corresponding to two 4-hydroxybenzoyl groups rather than one. The first set of 

resonances was assigned to the 4-hydroxybenzoyl group at 7-OH. The second was placed at 11-

OH on the basis of the large downfield shift (Δδ +1.56 ppm ) experienced by H-11 (δH 5.76) and 

the long-range correlation between this proton and the remaining 4-hydroxybenzoyl carbonyl at 

δC 167.3. As expected, H-11 correlated with H-9 and 12-CH2 in the COSY spectrum. In common 

with 3, J9,11 for 4 was also 11.3 Hz, confirming a diaxial relationship between H-9 and H-11 with 

the latter β-oriented. Thus compound 4 was 3β,6β-dihydroxy-7β,11α-di[(4-hydroxybenzoyl)oxy]-

21αH-24-norhopa-4(23),22(29)-diene. 

A full set of 1H and 13C NMR resonance assignments was obtained for 5 using COSY, HSQC 

and HMBC data. Compound 5 was isomeric with 1 and could be readily identified as a 24-

norhopadiene derivative. The difference between the two compounds resided in the structure of 

the E-ring. In the case of 5, the E-ring was a fused cyclopentene with an isopropyl group at C-21, 

whereas 1 featured an isopropylidene group attached to C-21 of a fused cyclopentane moiety. The 

multiplet structure and J-values for H-3, H-6, and H-7 (MeOH-d4) were similar for 5 and 1 

indicating that the configurations of these atoms were conserved between the two compounds. 

Thus 5 was 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene. 

 The molecular formula of compound 6 differed from that of 5 by the inclusion of one additional 

oxygen atom, and it was also isomeric with 2. Analysis of its 1H and 13C NMR spectra indicated 

that 6 was the 11α-hydroxyl derivative of 5. Thus in the HMBC spectrum acquired in CDCl3, H-

11 (δH 4.25) correlated with C-8 (δC 48.5), C-9 (δC 54.5), C-10 (δC 39.8) and C-12 (δC 36.6). 

Similarly in the COSY spectrum, H-11 correlated with H-9 and 12-CH2. The relative configuration 
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of 6 was examined in a series of 1D site selective ROE experiments (Figure 2). In particular, H-

11 correlated with both 25-Me and 26-Me, as was also found with the isomeric 2, allowing the β-

orientation to be assigned. Thus 6 was 3β,6β,11α-trihydroxy-7β-[(4-hydroxybenzoyl)oxy]-24-

norhopa-4(23),17(21)-diene. 

 Comparison of the 1H NMR spectra of 7 with 6 indicated that 2-CH2, H-5 and 23-CH2 were all 

downfield shifted, and the doublet of doublets resonance of H-3 was lacking. In the 13C NMR 

spectrum, there were 3 rather than 4 resonances attributable to oxygenated methines and a new 

resonance at δC 204.8 assigned to a carbonyl group. The location of the latter was readily 

established as C-3 from HMBC data, with correlations from 1-CH2, 2-CH2, H-5, and 23-CH2 to δC 

204.8 detected in the spectrum. Compound 7 was thus 6β,11α-dihydroxy-7β-[(4-

hydroxybenzoyl)oxy]-3-oxo-24-norhopa-4(23),17(21)-diene. 

 

2.2 Biological evaluation of compounds from Z. africana against bruchids 

Water, methanol and chloroform extracts of Z. africana root bark (10% w/v) significantly reduced 

the number of eggs laid per female bruchid when compared to the solvent control both prior to and 

after the exposure to cowpeas (Vigna unguiculata L. (Walp))  (Table 4 and Figure 2). None of the 

treatments at equivalent concentrations were more toxic than rotenone, the positive control.  Water 

and chloroform extracts assayed as a 10% w/v extract of dry root bark also increased mortality of 

bruchids over a six day exposure period (Table 4).   Prior to the addition of the cowpeas, the 

females actively probed on vials for suitable oviposition sites and left visible marks in the extract 

residues on the vial surface indicative of this behaviour; they also deposited eggs.  Probing is part 

of a sequence of behaviours leading to oviposition (Parr et al., 1996, 1998) and provides a route 

of absorption of toxins, where present, via ovipositors.  Females should have laid eggs on the 

cowpeas when given the opportunity, but in the presence of all extracts they laid significantly 
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fewer eggs compared with the solvent control (Table 4).  Similarly, a significantly reduced 

oviposition was recorded from insects in the presence of 1and 5 at all concentrations evaluated 

(10, 100, 1000 ppm) in comparison to the solvent control and this effect was not significantly 

different to rotenone, the positive control (Table 4 and Figure 2).  The effects of the two nor-

hopanes on bruchid mortality were influenced by concentration and exposure period.  Mortality 

observed after 1, 2, 3 and 6 days exposure were described by linear regression, with significantly 

increasing mortality observed with increasing exposure period and increasing concentration (S1).  

Although the addition of untreated beans after 72h provided a refuge from exposure to the extract 

and compounds, they did not prevent further mortality of insects.  In fact, the mortality continued 

to increase after 72h (S1). These data suggest that the nor-hopanes are toxic to bruchids but are 

less toxic than other highly potent plant compounds such as rotenone and deguelin identified in 

Tephrosia vogelii that is used as a natural pesticide in East and Southern Africa (Belmain et al., 

2012).   

Hopanes, while rare, are previously known from plants, for example, from Megacodon 

stylophorus, (Liu et al., 2014) and are elsewhere reported to be insecticidal compounds produced 

by entomopathogenic fungi (Isaka et al., 2011).  Nor-hopanes, however, have previously been of 

interest primarily due to their occurrence in crude oil albeit in highly reduced form (Prince et al., 

1994) rather than the oxidised and benzoyloxy substituted products reported here and have not 

been reported before as insecticidal compounds.  While 1 and 5 were not potent insecticidal 

compounds on their own compared to rotenone, the positive control, it is likely that they contribute 

to the insecticidal effects of Z. africana preparations that are used by farmers. Zanha species are 

also rich in saponins (Cuellar et al., 1997a; Cuellar et al., 1997b; Lavaud et al., 2015) which occur 

widely in other plants used for control of a agricultural pests (Jain and Tripathi, 1991; Mongalo et 

al., 2015; Nozzolillo et al., 1997; Shinoda et al., 2002) and, in some cases, also explain, biological 
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activities against storage pests including bruchids activity (Stevenson et al., 2009). Thus further 

work on may reveal additional value of saponins of this species but this present work provides 

scientific evidence that at least partially underpins the use of Z. africana by resource-poor farmers 

based on the occurrence nor-hopanes  that reduce the survival and oviposition behaviour of storage 

pests.The commercial potential of plant materials as pesticides is constrained by regulatory hurdles 

and plants such as Z. africana are unlikely to replace synthetic products (Sola et al., 2014).  Isman 

(2006), however, suggests that the value of pesticidal plants will be most important in developing 

countries by poorer farmers.  But, this requires greater scientific information to help understand 

how use of pesticidal plants might be optimised.  In this respect, the present work provides 

important knowledge for understanding more about chemical variability, persistence, residues and 

improving application.   

3. Experimental Section 

3.1 General Instrumentation. 

HRESIMS data were recorded using a Thermo LTQ-Orbitrap XL mass spectrometer linked to 

a Thermo Accela LC system performing chromatographic separation of 5 μl injections on a 

Phenomenex Luna C18(2) column (150 mm × 3.0 mm i.d., 3 μm particle size) with a linear mobile 

phase gradient of MeOH:H2O containing 0.1% HCO2H (90% H2O at t=0 min. to 100% MeOH at 

t=20 min). Spectra were recorded in either the positive or negative ion modes at 30,000 resolution 

NMR spectra were acquired in CDCl3 or MeOH-d4 at 30 °C on either a Bruker 400 (Avance) 

MHz instrument or a Bruker 700 (Avance II+) MHz instrument equipped with a 5mm 1H/13C/15N 

triple-resonance PFG cryoprobe. Standard pulse sequences and parameters were used to obtain 

one-dimensional 1H, 13C, and site selective NOE or ROE, and two-dimensional gradient-enhanced 

COSY, HSQC, and HMBC spectra. Chemical shift referencing was carried out using TMS for 
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samples dissolved in CDCl3 and the internal solvent resonances at δH 3.31 and δC 49.1 (calibrated 

to TMS at 0.00 ppm) for samples dissolved in MeOH-d4. 

Optical rotation measurements (sodium D line, λ 589 nm, 22 °C) were made using a Perkin-

Elmer 141 polarimeter with a 10 cm light path cylindrical cell of 1 ml volume. UV and CD spectra 

(22 °C, MeOH, 0.25 mg/ml) were acquired on an Applied Photophysics Ltd., Chirascan 

spectropolarimeter with the following parameters: 1 nm bandwidth, 1 nm step-size and a 0.5 s 

instrument time-per-point sampling; 2 mm and 0.5 mm cell path lengths were employed in the 

wavelength range 500–200 nm and all spectra were solvent baseline subtracted. 

 

3.2. Plant material and extraction.  

Z. africana was collected from a field site in Dodoma, Tanzania and a voucher specimen (Ref 

SUA Kusolwa 1) is deposited at the national herbarium, at Arusha and verified by Dr. E-F. A. 

Njau.  The root bark was removed and air dried in the dark. Root bark from Z. africana (155g) 

was coarsely ground into pieces (1-5mm) in a coffee-mill before extraction in n-hexane (1.55L).  

After 48h, the extract was filtered using a Büchner funnel and the plant material left in a fume-

cupboard to allow any solvent residue to evaporate before adding CHCl3 (1.55L).  This process 

was repeated for extracts in MeOH and H2O.  Filtered extracts were dried under vacuum 

affording extract residues of 0.20 (n-hexane), 0.80 (CHCl3), 35.84 (MeOH) and 10.10g (H2O), 

respectively 

 

3.3 Analysis and isolation of nor-hopanes. 

The dried CHCl3 extract was re-dissolved in MeOH to 50mg mL-1.  An HPLC system consisting 

of a Waters 2695 separations module linked to a 2996 photodiode array detector (PDAD) were 

used for visualization and isolation of the nor-hopanes.  Aliquots (90µL) were injected onto a 
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Phenomenex Luna RP18 column (150 × 10 mm, length × i.d.; 10µm particle size, maintained at 

30ºC) and eluted at 5mL min-1 using a non-linear gradient (curve=4) of 50%A: 40%B: 10%C (t=0) 

to 90%A: 0%B: 10%C (t=20-30min) returning to the starting conditions (t=31min), where 

A=HPLC-MeOH; B=H2O and C=1% HCO2H in CH3CN.  Automatic collection using a Waters 

fraction collector (WFC III) yielded five compounds 1 (8.1 mg; tR = 12.1 min), 2 (2.6 mg; tR = 7.8 

min), 5 (12.5 mg; tR = 12.8 min), 6 (7.2 mg; tR = 8.2 min), 7 (2.4 mg; tR = 8.7 min) while a sixth 

peak at tR = 9.7 was subjected to further HPLC using the same method described above, but with 

CH3CN in place of MeOH and a non-linear gradient (Waters curve=3) of 50% A: 40%; B 10%C 

(t=0) to 90%A: 0%B: 10%C (t=20-21 min) returning to the original conditions (t=22 min).  This 

procedure yielded two further compounds: 3 (~0.5 mg; tR = 5.9 min) and 4 (~0.5 mg; tR = 5.2 

min).  All compounds were isolated to a purity of at least 95%.  

The optical rotations of 1-3 and 5-7 were individually recorded on a Perkin-Elmer 343 

spectrometer.  The instrument was calibrated with D (+) sucrose (1.04 g/100ml, 1dm, []589 = + 

66.6o).  A 10cm cylindrical Quartz cell was employed (low volume).  All samples were measured 

at room temperature (23oC). There was insufficient material to obtain optical rotation data for 4.  

 

3.4 Insects and bioassays 

Callosobruchus maculatus (Fabricius, 1775) originally collected in Ghana (Kestenholz et al., 

2007) were maintained in 5 l glass culture jars with perforated lids in an unlit growth cabinet (28°C, 

55% RH) to develop on cowpea seeds Vigna unguiculata.  Under these conditions, adults emerged 

from cowpea seeds 24-28 days after oviposition.  The insects used for bioassays were 3-5 days 

post-emergence. 
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Samples of dried extract were re-dissolved in aliquots (10mL ) of solvent to concentrations that 

represented the proportions in a 10% extract of plant material.  1 (8.1mg) and 5 (12.1mg) were 

dissolved in CH3CN  to 1mg mL-1 (1000 ppm) and further diluted to 100 and 10ppm.  The lowest 

concentration was chosen as it approximated the amounts of 1 (5.2ppm) and 5 (8.1ppm) in the 

10% w/v chloroform extract.  Aliquots (75 µL) of compounds or extracts were evaporated onto 

vials (25mL, nominal capacity) under a stream of air and with constant rotation of the vial.  Insects 

(N=5-9) were added to the vials, ensuring a ratio of at least 1:1 (male to female).  Replicates 

(N=25) were prepared in this wayand the negative control group, which consisted of vials from 

which 75µL aliquots each of water, methanol and chloroform has been sequentially evaporated 

(N=23). Rotenone, 1000, 100 or 10ppm, in MeOH, was used as a positive control (N=10, per 

concentration). After 24, 48 and 72h mortality was assessed, and cowpeas (N=5) were added to 

each vial. After a further 72h, mortality was recorded once more.  The numbers of eggs laid on 

both the vials and the beans were counted and from these data the eggs laid per female were 

calculated. 

 

 

3.5. 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa-4(23),22(29)-diene (1) 

Off white solid; UV (MeOH) λmax nm: 253; Δε336 +45.7° (c 0.54, MeOH); for 
1H NMR and 13C 

NMR spectroscopic data, see Tables 1 and 2; HRESIMS m/z: 561.3592 [M-H]- (calc. for C36H49O5
-

, 561.7713). 

 

3.6 3β,6β,11α-trihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa-4(23),22(29)-diene 

(2). Off white solid; UV (MeOH) λmax nm: 258; Δε336 +30.6 (c 0.54, MeOH); for 
1H NMR and 13C 
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NMR spectroscopic data, see Tables 1 and 2; HRESIMS m/z: 577.3541 [M-H]- (calc. for C36H49O6
-

, 577.7707). 

 

3.7 11α-acetoxy-3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa-

4(23),22(29)-diene. (3). Off white solid; UV (MeOH) λmax nm: 258; Δε336 -64.00 (c 0.54, MeOH); 

for 
1H NMR and 13C NMR spectroscopic data, see Tables 1 and 2; HRESIMS m/z: 619.3653 [M-

H]- (calc. for C38H51O7
-, 619.8073). 

 

3.8 3β,6β-dihydroxy-7β,11α-di[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa-4(23),22(29)-diene 

(4).  Off white solid; UV (MeOH) λmax nm: 258; for 
1H NMR, for 

1H NMR and 13C NMR 

spectroscopic data, see Tables 1 and 2; HRESIMS m/z: 697.3673 [M-H]- (calc. for C43H53O8
-, 

697.8761). Insufficient compound was available to measure optical rotation. 

 

3.9 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene (5). Off 

white solid; UV (MeOH) λmax nm: 256; Δε336 +21.1 (c 0.54, MeOH); for 
1H NMR and 13C NMR 

spectroscopic data, see Tables 2 and 3; HRESIMS m/z: 561.3588 [M-H]- (calc. for C36H49O5
-, 

561.7713). 

 

3.10 3β,6β,11α-trihydroxy-7β-[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene (6). Off 

white solid; UV (MeOH) λmax nm: 258; Δε336 +16.9 (c 0.54, MeOH); for 
1H NMR and 13C NMR 

spectroscopic data, see Tables 2 and 3; HRESIMS m/z: 577.3541 [M-H]- (calc. for C36H49O6
-, 

577.7707). 
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3.11 6β,11α-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-3-oxo-24-norhopa-4(23),17(21)-diene (7). 

Off white solid; UV (MeOH) λmax nm: 255; Δε336 +13.8 (c 0.54, MeOH); for 
1H NMR and 13C 

NMR spectroscopic data, see Tables 2 and 3; HRESIMS m/z: 575.3386 [M-H]- (calc. for C38H47O6
-

, 575.7548). 
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