79 research outputs found

    Deep learning approach for Touchless Palmprint Recognition based on Alexnet and Fuzzy Support Vector Machine

    Get PDF
    Due to stable and discriminative features, palmprint-based biometrics has been gaining popularity in recent years. Most of the traditional palmprint recognition systems are designed with a group of hand-crafted features that ignores some additional features. For tackling the problem described above, a Convolution Neural Network (CNN) model inspired by Alex-net that learns the features from the ROI images and classifies using a fuzzy support vector machine is proposed. The output of the CNN is fed as input to the fuzzy Support vector machine. The CNN\u27s receptive field aids in extracting the most discriminative features from the palmprint images, and Fuzzy SVM results in a robust classification. The experiments are conducted on popular contactless datasets such as IITD, POLYU2, Tongji, and CASIA databases. Results demonstrate our approach outperformers several state-of-art techniques for palmprint recognition. Using this approach, we obtain 99.98% testing accuracy for the Tongji dataset and 99.76 % for the POLYU-II datasets

    Constitutive expression of SlMX1 gene improves fruit yield and quality, health-promoting compounds, fungal resistance and delays ripening in transgenic tomato plants

    Get PDF
    Tomato is one of the major economically domesticated crops, and it is extensively used in different ways and purposes worldwide. Cell metabolism is the central core of all the biological processes to sustain life including cell growth, differentiation, maintenance, and response to environmental stress. To evaluate how genetic engineering can improve tomato fruit metabolome, the transcriptomic and metabolomic datasets of two transgenic tomatoes (SlMX1 overexpression and RNAi lines) have been compared with wild-type. The combined results demonstrated that the constitutive expression of SlMX1 not only increased trichome formation, carotenoids, and terpenoids as has been stated in several studies, but has also up- and down-regulated the expression of multiple genes related to cell growth (cell wall turnover), primary (carbohydrates, vitamins, and phytohormones), and secondary (phenylpropanoids, carotenoids, and terpenoids) metabolism, cell signaling, and stress responses. These changes in gene expression due to the constitutive expression of SlMX1 promote the most important agroeconomic traits such as fruit yield and quality, biosynthesis of health-promoting phytochemicals (including phenolic acids, flavonoids, and anthocyanins), and finally, activate resistance to Botrytis cinerea and repress the expression of over-ripening-related genes, thus extending the fruit shelf-life. In conclusion, the traits improvement achieved by SlMX1 overexpression can be harnessed in molecular breeding programs to engineer fruit size and yield, induce health-promoting secondary metabolites, promote fungal resistance, and finally extend the fruit shelf-life.Xunta de Galicia | Ref. ED431E 2018/07Xunta de Galicia | Ref. ED431D2017/18Agencia Estatal de Investigación | Ref. EQC2019-006178-

    Eugenia jambolana Lam. Berry Extract Inhibits Growth and Induces Apoptosis of Human Breast Cancer but Not Non-Tumorigenic Breast Cells

    Get PDF
    The ripe purple berries of the native Indian plant Eugenia jambolana Lam., known as Jamun, are popularly consumed and available in the United States in Florida and Hawaii. Despite the growing body of data on the chemopreventive potential of edible berry extracts, there is paucity of such data for Jamun fruit. Therefore our laboratory initiated the current study with the following objectives: (1) to prepare a standardized Jamun fruit extract (JFE) for biological studies and (2) to investigate the antiproliferative and pro-apoptotic effects of JFE in estrogen dependent/aromatase positive (MCF-7aro), and estrogen independent (MDA-MB-231) breast cancer cells, and in a normal/nontumorigenic (MCF-10A) breast cell line. JFE was standardized to anthocyanin content using the pH differential method, and individual anthocyanins were identified by high performance liquid chromatography with ultraviolet (HPLC−UV) and tandem mass spectrometry (LC−MS/MS) methods. JFE contained 3.5% anthocyanins (as cyanidin-3-glucoside equivalents) which occur as diglucosides of five anthocyanidins/aglycons: delphinidin, cyanidin, petunidin, peonidin and malvidin. In the proliferation assay, JFE was most effective against MCF-7aro (IC50 = 27 μg/mL), followed by MDA-MB-231 (IC50 = 40 μg/mL) breast cancer cells. Importantly, JFE exhibited only mild antiproliferative effects against the normal MCF-10A (IC50 \u3e 100 μg/mL) breast cells. Similarly, JFE (at 200 μg/mL) exhibited pro-apoptotic effects against the MCF-7aro (p ≤ 0.05) and the MDA-MB-231 (p ≤ 0.01) breast cancer cells, but not toward the normal MCF-10A breast cells. These studies suggest that JFE may have potential beneficial effects against breast cancer

    Targeting TMEM176B Enhances Antitumor Immunity and Augments the Efficacy of Immune Checkpoint Blockers by Unleashing Inflammasome Activation.

    Get PDF
    Although immune checkpoint blockers have yielded significant clinical benefits in patients with different malignancies, the efficacy of these therapies is still limited. Here, we show that disruption of transmembrane protein 176B (TMEM176B) contributes to CD8+ T cell-mediated tumor growth inhibition by unleashing inflammasome activation. Lack of Tmem176b enhances the antitumor activity of anti-CTLA-4 antibodies through mechanisms involving caspase-1/IL-1β activation. Accordingly, patients responding to checkpoint blockade therapies display an activated inflammasome signature. Finally, we identify BayK8644 as a potent TMEM176B inhibitor that promotes CD8+ T cell-mediated tumor control and reinforces the antitumor activity of both anti-CTLA-4 and anti-PD-1 antibodies. Thus, pharmacologic de-repression of the inflammasome by targeting TMEM176B may enhance the therapeutic efficacy of immune checkpoint blockers.Uruguay INNOVA 2, Fondo Maria Viñas and Clemente Estable from ANII, as well as grants from CABBIO, PEDECIBA, ECOS-SUD and FOCEM (MERCOSUR Structural Convergence Fund), COF 03/11 to MH, The Harry J Lloyd Foundation to MRG and the Instituto Nacional del Cancer to YDM, Agencia de Promoción Científica y Tecnológica to GAR and MRG, Fundación Bunge & Born and Fundación Sales to GA

    Further insights in trichothiodistrophy: A clinical, microscopic, and ultrastructural study of 20 cases and literature review

    Get PDF
    Trichothiodistrophy (TTD) is a rare autosomal recessive condition that is characterized by a specific congenital hair shaft dysplasia caused by deficiency of sulfur associated with a wide spectrum of multisystem abnormalities. In this article, we study clinical, microscopic, and ultrastructural findings of 20 patients with TTD with the aim to add further insights regarding to this rare condition. Additionally, analyses of our results are compared with those extracted from the literature in order to enhance its comprehensibility. Materials and Methods: Twenty cases of TTD were included: 7 from Mexico and 14 from Spain. Clinical, microscopic, scanning electron microscopy (SEM) studies and X-ray microanalysis (XrMa) were carried out in all of them. Genetic studies were performed in all seven Mexican cases. Patients with xeroderma pigmentosum and xeroderma pigmentosum/TTD-complex were excluded. Results: Cuticular changes and longitudinal crests of the hair shaft were demonstrated. These crests were irregular, disorganized, following the hair longest axis. Hair shaft sulfur deficiency was disposed discontinuously and intermittently rather than uniformly. This severe decrease of sulfur contents was located close to the trichoschisis areas. Only five patients did not show related disturbances. Micro-dolichocephaly was observed in five cases and represented the most frequent facial dysmorphism found. It is also remarkable that all patients with urologic malformations also combined diverse neurologic disorders. Moreover, three Mexican sisters demonstrated the coexistence of scarce pubic vellus hair, developmental delay, onychodystrophy, and maxillar/mandibullar hypoplasia. Conclusions: TTD phenotype has greatly varied from very subtle forms to severe alterations such as neurologic abnormalities, blindness, lamellar ichthyosis and gonadal malformations. Herein, a multisystem study should be performed mandatorily in patients diagnosed with TTD

    Contribution of Efflux to the Emergence of Isoniazid and Multidrug Resistance in Mycobacterium tuberculosis

    Get PDF
    Multidrug resistant (MDR) tuberculosis is caused by Mycobacterium tuberculosis resistant to isoniazid and rifampicin, the two most effective drugs used in tuberculosis therapy. Here, we investigated the mechanism by which resistance towards isoniazid develops and how overexpression of efflux pumps favors accumulation of mutations in isoniazid targets, thus establishing a MDR phenotype. The study was based on the in vitro induction of an isoniazid resistant phenotype by prolonged serial exposure of M. tuberculosis strains to the critical concentration of isoniazid employed for determination of drug susceptibility testing in clinical isolates. Results show that susceptible and rifampicin monoresistant strains exposed to this concentration become resistant to isoniazid after three weeks; and that resistance observed for the majority of these strains could be reduced by means of efflux pumps inhibitors. RT-qPCR assessment of efflux pump genes expression showed overexpression of all tested genes. Enhanced real-time efflux of ethidium bromide, a common efflux pump substrate, was also observed, showing a clear relation between overexpression of the genes and increased efflux pump function. Further exposure to isoniazid resulted in the selection and stabilization of spontaneous mutations and deletions in the katG gene along with sustained increased efflux activity. Together, results demonstrate the relevance of efflux pumps as one of the factors of isoniazid resistance in M. tuberculosis. These results support the hypothesis that activity of efflux pumps allows the maintenance of an isoniazid resistant population in a sub-optimally treated patient from which isoniazid genetically resistant mutants emerge. Therefore, the use of inhibitors of efflux should be considered in the development of new therapeutic strategies for preventing the emergence of MDR-TB during treatment

    Mitochondrial DNA Variation, but Not Nuclear DNA, Sharply Divides Morphologically Identical Chameleons along an Ancient Geographic Barrier

    Get PDF
    The Levant is an important migration bridge, harboring border-zones between Afrotropical and palearctic species. Accordingly, Chameleo chameleon, a common species throughout the Mediterranean basin, is morphologically divided in the southern Levant (Israel) into two subspecies, Chamaeleo chamaeleon recticrista (CCR) and C. c. musae (CCM). CCR mostly inhabits the Mediterranean climate (northern Israel), while CCM inhabits the sands of the north-western Negev Desert (southern Israel). AFLP analysis of 94 geographically well dispersed specimens indicated moderate genetic differentiation (PhiPT = 0.097), consistent with the classical division into the two subspecies, CCR and CCM. In contrast, sequence analysis of a 637 bp coding mitochondrial DNA (mtDNA) fragment revealed two distinct phylogenetic clusters which were not consistent with the morphological division: one mtDNA cluster consisted of CCR specimens collected in regions northern of the Jezreel Valley and another mtDNA cluster harboring specimens pertaining to both the CCR and CCM subspecies but collected southern of the Jezreel Valley. AMOVA indicated clear mtDNA differentiation between specimens collected northern and southern to the Jezreel Valley (PhiPT = 0.79), which was further supported by a very low coalescent-based estimate of effective migration rates. Whole chameleon mtDNA sequencing (∼17,400 bp) generated from 11 well dispersed geographic locations revealed 325 mutations sharply differentiating the two mtDNA clusters, suggesting a long allopatric history further supported by BEAST. This separation correlated temporally with the existence of an at least 1 million year old marine barrier at the Jezreel Valley exactly where the mtDNA clusters meet. We discuss possible involvement of gender-dependent life history differences in maintaining such mtDNA genetic differentiation and suggest that it reflects (ancient) local adaptation to mitochondrial-related traits

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore