23 research outputs found

    Paraoxonase 1 Polymorphism and Prenatal Pesticide Exposure Associated with Adverse Cardiovascular Risk Profiles at School Age

    Get PDF
    Background: Prenatal environmental factors might influence the risk of developing cardiovascular disease later in life. The HDL-associated enzyme paraoxonase 1 (PON1) has anti-oxidative functions that may protect against atherosclerosis. It also hydrolyzes many substrates, including organophosphate pesticides. A common polymorphism, PON1 Q192R, affects both properties, but a potential interaction between PON1 genotype and pesticide exposure on cardiovascular risk factors has not been investigated. We explored if the PON1 Q192R genotype affects cardiovascular risk factors in school-age children prenatally exposed to pesticides. Methods: Pregnant greenhouse-workers were categorized as high, medium, or not exposed to pesticides. Their children underwent a standardized examination at age 6-to-11 years, where blood pressure, skin folds, and other anthropometric parameters were measured. PON1-genotype was determined for 141 children (88 pesticide exposed and 53 unexposed). Serum was analyzed for insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein 3 (IGFBP3), insulin and leptin. Body fat percentage was calculated from skin fold thicknesses. BMI results were converted to age and sex specific Z-scores. Results: Prenatally pesticide exposed children carrying the PON1 192R-allele had higher abdominal circumference, body fat content, BMI Z-scores, blood pressure, and serum concentrations of leptin and IGF-I at school age than unexposed children. The effects were related to the prenatal exposure level. For children with the PON1 192QQ genotype, none of the variables was affected by prenatal pesticide exposure. Conclusion: Our results indicate a gene-environment interaction between prenatal pesticide exposure and the PON1 gene. Only exposed children with the R-allele developed adverse cardiovascular risk profiles thought to be associated with the R-allele

    Ionising radiation and cardiovascular disease: systematic review and meta-analysis

    No full text
    International audienceOBJECTIVETo systematically review and perform a meta-analysis of radiation associated risks of cardiovascular disease in all groups exposed to radiation with individual radiation dose estimates.DESIGNSystematic review and meta-analysis.MAIN OUTCOME MEASURESExcess relative risk per unit dose (Gy), estimated by restricted maximum likelihood methods.DATA SOURCESPubMed and Medline, Embase, Scopus, Web of Science Core collection databases.ELIGIBILITY CRITERIA FOR SELECTING STUDIESDatabases were searched on 6 October 2022, with no limits on date of publication or language. Animal studies and studies without an abstract were excluded.RESULTSThe meta-analysis yielded 93 relevant studies. Relative risk per Gy increased for all cardiovascular disease (excess relative risk per Gy of 0.11 (95% confidence interval 0.08 to 0.14)) and for the four major subtypes of cardiovascular disease (ischaemicheart disease, other heart disease, cerebrovascular disease, all cardiovascular disease). However, interstudy heterogeneity was noted (P<0.05 for allendpoints except for other heart disease), possibly resulting from interstudy variation in unmeasured confounders or effect modifiers, which is markedly reduced if attention is restricted to higher quality studies or those at moderate doses (<0.5 Gy) or low dose rates (<5 mGy/h). For ischaemic heart disease and all cardiovascular disease, risks were larger per unit dose for lower dose (inverse dose effect) and forfractionated exposures (inverse dose fractionation effect). Population based excess absolute risks are estimated for a number of national populations (Canada, England and Wales, France, Germany, Japan, USA) and range from 2.33% per Gy (95% confidence interval 1.69% to 2.38%) for England and Wales to 3.66% per Gy (2.65% to 4.68%) for Germany, largely reflecting the underlying rates of cardiovascular disease mortality in these populations. Estimated risk of mortality from cardiovascular disease are generally dominated by cerebrovascular disease (around 0.94-1.25% per Gy), with the next largest contribution from ischaemic heart disease (around 0.30-1.20% per Gy).CONCLUSIONSResults provide evidence supporting a causal association between radiation exposure andcardiovascular disease at high dose, and to a lesser extent at low dose, with some indications of differences in risk between acute and chronic exposures, which require further investigation. The observed heterogeneity complicates a causal interpretation of these findings, although this heterogeneity is much reduced if only higher qualitystudies or those at moderate doses or low dose rates are considered. Studies are needed to assess in more detail modifications of radiation effect by lifestyle and medical risk factors

    Risk of second primary cancer among women in the Kaiser Permanente Breast Cancer Survivors Cohort

    Get PDF
    Abstract Background Breast cancer survivors are living longer due to early detection and advances in treatment and are at increased risk for second primary cancers. Comprehensive evaluation of second cancer risk among patients treated in recent decades is lacking. Methods We identified 16,004 females diagnosed with a first primary stage I-III breast cancer between 1990 and 2016 (followed through 2017) and survived ≥ 1 year at Kaiser Permanente (KP) Colorado, Northwest, and Washington. Second cancer was defined as an invasive primary cancer diagnosed ≥ 12 months after the first primary breast cancer. Second cancer risk was evaluated for all cancers (excluding ipsilateral breast cancer) using standardized incidence ratios (SIRs), and a competing risk approach for cumulative incidence and hazard ratios (HRs) adjusted for KP center, treatment, age, and year of first cancer diagnosis. Results Over a median follow-up of 6.2 years, 1,562 women developed second cancer. Breast cancer survivors had a 70% higher risk of any cancer (95%CI = 1.62–1.79) and 45% higher risk of non-breast cancer (95%CI = 1.37–1.54) compared with the general population. SIRs were highest for malignancies of the peritoneum (SIR = 3.44, 95%CI = 1.65–6.33), soft tissue (SIR = 3.32, 95%CI = 2.51–4.30), contralateral breast (SIR = 3.10, 95%CI = 2.82–3.40), and acute myeloid leukemia (SIR = 2.11, 95%CI = 1.18–3.48)/myelodysplastic syndrome (SIR = 3.25, 95%CI = 1.89–5.20). Women also had elevated risks for oral, colon, pancreas, lung, and uterine corpus cancer, melanoma, and non-Hodgkin lymphoma (SIR range = 1.31–1.97). Radiotherapy was associated with increased risk for all second cancers (HR = 1.13, 95%CI = 1.01–1.25) and soft tissue sarcoma (HR = 2.36, 95%CI = 1.17–4.78), chemotherapy with decreased risk for all second cancers (HR = 0.87, 95%CI = 0.78–0.98) and increased myelodysplastic syndrome risk (HR = 3.01, 95%CI = 1.01–8.94), and endocrine therapy with lower contralateral breast cancer risk (HR = 0.48, 95%CI = 0.38–0.60). Approximately 1 in 9 women who survived ≥ 1 year developed second cancer, 1 in 13 developed second non-breast cancer, and 1 in 30 developed contralateral breast cancer by 10 years. Trends in cumulative incidence declined for contralateral breast cancer but not for second non-breast cancers. Conclusions Elevated risks of second cancer among breast cancer survivors treated in recent decades suggests that heightened surveillance is warranted and continued efforts to reduce second cancers are needed

    Pooled Analysis of Meningioma Risk Following Treatment for Childhood Cancer

    No full text
    Importance: Meningioma is the most common subsequent neoplasm following cranial irradiation among survivors of childhood cancer, but there are still uncertainties regarding the magnitude of the radiation dose-response association, potential modifiers of radiation risks, and the role of chemotherapy. Objective: To evaluate meningioma risk in survivors of childhood cancer following radiotherapy and chemotherapy and identify possible modifying factors of radiation-associated risk. Design, Setting, and Participants: This international case-control study pooled data from 4 nested case-control studies of survivors of childhood cancer diagnosed between 1942 and 2000, followed through 2016. Cases were defined as participants diagnosed with a subsequent meningioma. Controls were matched to cases based on sex, age at first cancer diagnosis, and duration of follow-up. Data were analyzed from July 2019 to June 2022. Exposures: Radiation dose (Gy) to the meningioma site and cumulative chemotherapy doses, including intrathecal and systemic methotrexate doses. Main Outcomes and Measures: The main outcome was subsequent meningioma, assessed using odds ratios (ORs) and excess odds ratios per gray (EOR/Gy). Results: The analysis included 273 survivors of childhood cancer who developed meningioma (cases) and 738 survivors who did not (controls), with a total of 1011 individuals (median [IQR] age at first cancer diagnosis 5.0 [3.0-9.2] years; 599 [59.2%] female). Median (IQR) time since first cancer was 21.5 (15.0-27.0) years. Increasing radiation dose was associated with increased risk of meningioma (EOR/Gy, 1.44; 95% CI, 0.62-3.61), and there was no evidence of departure from linearity (P =.90). Compared with survivors who were not exposed to radiation therapy, those who received doses of 24 Gy or more had more than 30-fold higher odds of meningioma (OR, 33.66; 95% CI, 14.10-80.31). The radiation dose-response association was significantly lower among patients treated at age 10 years or older compared with those treated before age 10 years (EOR/Gy, 0.57; 95% CI, 0.18-1.91 vs 2.20; 95% CI, 0.87-6.31; P for heterogeneity =.03). Risk associated with radiation remained significantly elevated 30 years after exposure (EOR/Gy, 3.76; 95% CI, 0.77-29.15). We found an increased risk of meningioma among children who had received methotrexate (OR, 3.43; 95% CI, 1.56-7.57), but no evidence of a dose-response association or interaction with radiation dose. Conclusions and Relevance: These findings suggest that the meninges are highly radiosensitive, especially for children treated before age 10 years. These results support the reduction in whole-brain irradiation over recent decades and the prioritization of approaches that limit radiation exposure in healthy tissue for children. The persistence of elevated risks of meningiomas for 30 years after cranial radiotherapy could help inform surveillance guidelines.
    corecore