59 research outputs found

    The LEADING Guideline:Reporting Standards for Expert Panel, Best-Estimate Diagnosis, and Longitudinal Expert All Data (LEAD) Studies.

    Get PDF
    Accurate assessments of symptoms and diagnoses are essential for health research and clinical practice but face many challenges. The absence of a single error-free measure is currently addressed by assessment methods involving experts reviewing several sources of information to achieve a more accurate or best-estimate assessment. Three bodies of work spanning medicine, psychiatry, and psychology propose similar assessment methods: The Expert Panel, the Best-Estimate Diagnosis, and the Longitudinal Expert All Data (LEAD). However, the quality of such best-estimate assessments is typically very difficult to evaluate due to poor reporting of the assessment methods and when it is reported, the reporting quality varies substantially. Here we tackle this gap by developing reporting guidelines for such studies, using a four-stage approach: 1) drafting reporting standards accompanied by rationales and empirical evidence, which were further developed with a patient organization for depression, 2) incorporating expert feedback through a two-round Delphi procedure, 3) refining the guideline based on an expert consensus meeting, and 4) testing the guideline by i) having two researchers test it and ii) using it to examine the extent previously published articles report the standards. The last step also demonstrates the need for the guideline: 18 to 58% (Mean = 33%) of the standards were not reported across fifteen randomly selected studies. The LEADING guideline comprises 20 reporting standards related to four groups: The Longitudinal design; the Appropriate data; the Evaluation - experts, materials, and procedures; and the Validity group. We hope that the LEADING guideline will be useful in assisting researchers in planning, reporting, and evaluating research aiming to achieve best-estimate assessments. Open data (Delphi surveys 1 and 2), code (analyses), and material (surveys): https://osf.io/fkv4b

    Increased epigenetic age in normal breast tissue from luminal breast cancer patients

    Get PDF
    BACKGROUND: Age is one of the most important risk factors for developing breast cancer. However, age-related changes in normal breast tissue that potentially lead to breast cancer are incompletely understood. Quantifying tissue-level DNA methylation can contribute to understanding these processes. We hypothesized that occurrence of breast cancer should be associated with an acceleration of epigenetic aging in normal breast tissue. RESULTS: Ninety-six normal breast tissue samples were obtained from 88 subjects (breast cancer = 35 subjects/40 samples, unaffected = 53 subjects/53 samples). Normal tissue samples from breast cancer patients were obtained from distant non-tumor sites of primary mastectomy specimens, while samples from unaffected women were obtained from the Komen Tissue Bank (n = 25) and from non-cancer-related breast surgery specimens (n = 28). Patients were further stratified into four cohorts: age < 50 years with and without breast cancer and age ≥ 50 with and without breast cancer. The Illumina HumanMethylation450k BeadChip microarray was used to generate methylation profiles from extracted DNA samples. Data was analyzed using the "Epigenetic Clock," a published biomarker of aging based on a defined set of 353 CpGs in the human genome. The resulting age estimate, DNA methylation age, was related to chronological age and to breast cancer status. The DNAmAge of normal breast tissue was strongly correlated with chronological age (r = 0.712, p < 0.001). Compared to unaffected peers, breast cancer patients exhibited significant age acceleration in their normal breast tissue (p = 0.002). Multivariate analysis revealed that epigenetic age acceleration in the normal breast tissue of subjects with cancer remained significant after adjusting for clinical and demographic variables. Additionally, smoking was found to be positively correlated with epigenetic aging in normal breast tissue (p = 0.012). CONCLUSIONS: Women with luminal breast cancer exhibit significant epigenetic age acceleration in normal adjacent breast tissue, which is consistent with an analogous finding in malignant breast tissue. Smoking is also associated with epigenetic age acceleration in normal breast tissue. Further studies are needed to determine whether epigenetic age acceleration in normal breast tissue is predictive of incident breast cancer and whether this mediates the risk of chronological age on breast cancer risk

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    An efficient strategy for evaluating new non-invasive screening tests for colorectal cancer: the guiding principles

    Get PDF
    Objective: New screening tests for colorectal cancer (CRC) are rapidly emerging. Conducting trials with mortality reduction as the end point supporting their adoption is challenging. We re-examined the principles underlying evaluation of new non-invasive tests in view of technological developments and identification of new biomarkers. Design: A formal consensus approach involving a multidisciplinary expert panel revised eight previously established principles. Results: Twelve newly stated principles emerged. Effectiveness of a new test can be evaluated by comparison with a proven comparator non-invasive test. The faecal immunochemical test is now considered the appropriate comparator, while colonoscopy remains the diagnostic standard. For a new test to be able to meet differing screening goals and regulatory requirements, flexibility to adjust its positivity threshold is desirable. A rigorous and efficient four-phased approach is proposed, commencing with small studies assessing the test’s ability to discriminate between CRC and non-cancer states (phase I), followed by prospective estimation of accuracy across the continuum of neoplastic lesions in neoplasia-enriched populations (phase II). If these show promise, a provisional test positivity threshold is set before evaluation in typical screening populations. Phase III prospective studies determine single round intention-to-screen programme outcomes and confirm the test positivity threshold. Phase IV studies involve evaluation over repeated screening rounds with monitoring for missed lesions. Phases III and IV findings will provide the real-world data required to model test impact on CRC mortality and incidence. Conclusion: New non-invasive tests can be efficiently evaluated by a rigorous phased comparative approach, generating data from unbiased populations that inform predictions of their health impact

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Evidence synthesis to inform model-based cost-effectiveness evaluations of diagnostic tests: a methodological systematic review of health technology assessments

    Get PDF
    Background: Evaluations of diagnostic tests are challenging because of the indirect nature of their impact on patient outcomes. Model-based health economic evaluations of tests allow different types of evidence from various sources to be incorporated and enable cost-effectiveness estimates to be made beyond the duration of available study data. To parameterize a health-economic model fully, all the ways a test impacts on patient health must be quantified, including but not limited to diagnostic test accuracy. Methods: We assessed all UK NIHR HTA reports published May 2009-July 2015. Reports were included if they evaluated a diagnostic test, included a model-based health economic evaluation and included a systematic review and meta-analysis of test accuracy. From each eligible report we extracted information on the following topics: 1) what evidence aside from test accuracy was searched for and synthesised, 2) which methods were used to synthesise test accuracy evidence and how did the results inform the economic model, 3) how/whether threshold effects were explored, 4) how the potential dependency between multiple tests in a pathway was accounted for, and 5) for evaluations of tests targeted at the primary care setting, how evidence from differing healthcare settings was incorporated. Results: The bivariate or HSROC model was implemented in 20/22 reports that met all inclusion criteria. Test accuracy data for health economic modelling was obtained from meta-analyses completely in four reports, partially in fourteen reports and not at all in four reports. Only 2/7 reports that used a quantitative test gave clear threshold recommendations. All 22 reports explored the effect of uncertainty in accuracy parameters but most of those that used multiple tests did not allow for dependence between test results. 7/22 tests were potentially suitable for primary care but the majority found limited evidence on test accuracy in primary care settings. Conclusions: The uptake of appropriate meta-analysis methods for synthesising evidence on diagnostic test accuracy in UK NIHR HTAs has improved in recent years. Future research should focus on other evidence requirements for cost-effectiveness assessment, threshold effects for quantitative tests and the impact of multiple diagnostic tests
    corecore