50 research outputs found

    T-regulatory cells and vaccination “pay attention and do not neglect them”: Lessons from HIV and cancer vaccine trials

    Get PDF
    Efficient vaccines are characterized by the establishment of long-lived memory T cells, including T-helper (effectors and follicular) and T-regulatory cells (Tregs). While the former induces cytotoxic or antibody responses, the latter regulates immune responses by maintaining homeostasis. The role of Tregs in inflammatory conditions is ambiguous and their systematic monitoring in vaccination along with effector T-cells is not instinctive. Recent studies from the cancer field clearly showed that Tregs suppress vaccine-induced immune responses and correlate with poor clinical benefit. In HIV infection, Tregs are needed during acute infection to preserve tissue integrity from an overwhelmed activation, but are not beneficial in chronic infection as they suppress anti-HIV responses. Current assays used to evaluate vaccine-induced specific responses are limited as they do not take into account antigen-specific Tregs. However, new assays, such as the OX40 assay, which allow for the simultaneous detection of a full range of Th-responses including antigen-specific Tregs responses, can overcome these issues. In this review article we will revise the role of Tregs in vaccination and review the recent work performed in the field, including the available tools to monitor them, from novel assays to humanized mouse models

    T Cells Recognizing a Peptide Contaminant Undetectable by Mass Spectrometry

    Get PDF
    Synthetic peptides are widely used in immunological research as epitopes to stimulate their cognate T cells. These preparations are never completely pure, but trace contaminants are commonly revealed by mass spectrometry quality controls. In an effort to characterize novel major histocompatibility complex (MHC) Class I-restricted ÎČ-cell epitopes in non-obese diabetic (NOD) mice, we identified islet-infiltrating CD8+ T cells recognizing a contaminating peptide. The amount of this contaminant was so small to be undetectable by direct mass spectrometry. Only after concentration by liquid chromatography, we observed a mass peak corresponding to an immunodominant islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214 epitope described in the literature. Generation of CD8+ T-cell clones recognizing IGRP206-214 using a novel method confirmed the identity of the contaminant, further underlining the immunodominance of IGRP206-214. If left undetected, minute impurities in synthetic peptide preparations may thus give spurious results

    T-Regulatory Cells and Vaccination “Pay Attention and Do Not Neglect Them”: Lessons from HIV and Cancer Vaccine Trials

    No full text
    Efficient vaccines are characterized by the establishment of long-lived memory T cells, including T-helper (effectors and follicular) and T-regulatory cells (Tregs). While the former induces cytotoxic or antibody responses, the latter regulates immune responses by maintaining homeostasis. The role of Tregs in inflammatory conditions is ambiguous and their systematic monitoring in vaccination along with effector T-cells is not instinctive. Recent studies from the cancer field clearly showed that Tregs suppress vaccine-induced immune responses and correlate with poor clinical benefit. In HIV infection, Tregs are needed during acute infection to preserve tissue integrity from an overwhelmed activation, but are not beneficial in chronic infection as they suppress anti-HIV responses. Current assays used to evaluate vaccine-induced specific responses are limited as they do not take into account antigen-specific Tregs. However, new assays, such as the OX40 assay, which allow for the simultaneous detection of a full range of Th-responses including antigen-specific Tregs responses, can overcome these issues. In this review article we will revise the role of Tregs in vaccination and review the recent work performed in the field, including the available tools to monitor them, from novel assays to humanized mouse models

    Au delà de l'hormone : l'insuline et les autres antigÚnes des cellules béta dans le diabÚte de type 1

    No full text
    PARIS5-BU MĂ©d.Cochin (751142101) / SudocSudocFranceF

    Role of miR-155 in the regulation of lymphocyte immune function and disease

    No full text
    MicroRNAs (miRNAs) have emerged as critical regulators of gene expression within cells. One particular miRNA, miR-155, is highly expressed within lymphocytes (both B and T cells) and mediates a number of important roles. These include shaping the transcriptome of lymphoid cells that control diverse biological functions vital in adaptive immunity. The use of mice engineered to be deficient in miR-155, as well as the identification of endogenous targets of miR-155 in T cells by transcriptome- wide analysis, has helped to unravel the crucial role that this miRNA plays in fine tuning the regulation of lymphocyte subsets such as B cells, CD8+ and CD4+ T cells ranging from T helper type 1 (Th1), Th2, Th17 and regulatory T cells. In this review, we summarize what we have learned about miR-155 in the regulation of lymphocyte responses at the cellular and molecular levels and in particular, we focus on the recent findings showing that miR-155 shapes the balance between tolerance and immunity

    T-Regulatory Cells and Vaccination “Pay Attention and Do Not Neglect Them”: Lessons from HIV and Cancer Vaccine Trials

    Get PDF
    Efficient vaccines are characterized by the establishment of long-lived memory T cells, including T-helper (effectors and follicular) and T-regulatory cells (Tregs). While the former induces cytotoxic or antibody responses, the latter regulates immune responses by maintaining homeostasis. The role of Tregs in inflammatory conditions is ambiguous and their systematic monitoring in vaccination along with effector T-cells is not instinctive. Recent studies from the cancer field clearly showed that Tregs suppress vaccine-induced immune responses and correlate with poor clinical benefit. In HIV infection, Tregs are needed during acute infection to preserve tissue integrity from an overwhelmed activation, but are not beneficial in chronic infection as they suppress anti-HIV responses. Current assays used to evaluate vaccine-induced specific responses are limited as they do not take into account antigen-specific Tregs. However, new assays, such as the OX40 assay, which allow for the simultaneous detection of a full range of Th-responses including antigen-specific Tregs responses, can overcome these issues. In this review article we will revise the role of Tregs in vaccination and review the recent work performed in the field, including the available tools to monitor them, from novel assays to humanized mouse models

    T-Regulatory Cells and Vaccination “Pay Attention and Do Not Neglect Them”: Lessons from HIV and Cancer Vaccine Trials

    No full text
    Efficient vaccines are characterized by the establishment of long-lived memory T cells, including T-helper (effectors and follicular) and T-regulatory cells (Tregs). While the former induces cytotoxic or antibody responses, the latter regulates immune responses by maintaining homeostasis. The role of Tregs in inflammatory conditions is ambiguous and their systematic monitoring in vaccination along with effector T-cells is not instinctive. Recent studies from the cancer field clearly showed that Tregs suppress vaccine-induced immune responses and correlate with poor clinical benefit. In HIV infection, Tregs are needed during acute infection to preserve tissue integrity from an overwhelmed activation, but are not beneficial in chronic infection as they suppress anti-HIV responses. Current assays used to evaluate vaccine-induced specific responses are limited as they do not take into account antigen-specific Tregs. However, new assays, such as the OX40 assay, which allow for the simultaneous detection of a full range of Th-responses including antigen-specific Tregs responses, can overcome these issues. In this review article we will revise the role of Tregs in vaccination and review the recent work performed in the field, including the available tools to monitor them, from novel assays to humanized mouse models
    corecore