19 research outputs found

    Sleep deprivation impairs cAMP signalling in the hippocampus

    No full text
    Millions of people regularly obtain insufficient sleep1. Given the effect of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to produce memory deficits in learning models that are dependent on the hippocampus2, 3, 4, 5. Here we have identified a molecular mechanism by which brief sleep deprivation alters hippocampal function. Sleep deprivation selectively impaired 3', 5'-cyclic AMP (cAMP)- and protein kinase A (PKA)-dependent forms of synaptic plasticity6 in the mouse hippocampus, reduced cAMP signalling, and increased activity and protein levels of phosphodiesterase 4 (PDE4), an enzyme that degrades cAMP. Treatment of mice with phosphodiesterase inhibitors rescued the sleep-deprivation-induced deficits in cAMP signalling, synaptic plasticity and hippocampus-dependent memory. These findings demonstrate that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signalling through increased PDE4 activity. Thus, drugs that enhance cAMP signalling may provide a new therapeutic approach to counteract the cognitive effects of sleep deprivation

    Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation

    No full text
    Cyclic AMP phosphodiesterase-4 (PDE4) isoforms underpin compartmentalised cAMP signalling in mammalian cells through targeting to specific signalling complexes. Their importance is apparent as PDE4 selective inhibitors exert profound anti-inflammatory effects and act as cognitive enhancers. The p38 MAPK signalling cascade is a key signal transduction pathway involved in the control of cellular immune, inflammatory and stress responses. Here we show that phosphodiesterase-4A5 (PDE4A5) is phosphorylated at Ser147, within the regulatory UCR1 domain conserved amongst PDE4 long isoforms, by the p38 MAPK activated kinase, MK2 (MAPKAPK2). Phosphorylation by MK2, while not altering PDE4A5 activity, markedly attenuates PDE4A5 activation through phosphorylation by protein kinase A (PKA). This modification confers amplification of intracellular cAMP accumulation in response to adenylyl cyclase activation by attenuating a major desensitization system to cAMP. Such re-programming of cAMP accumulation is recapitulated in wild-type primary macrophages, but not MK2/3 null macrophages. Phosphorylation by MK2 also triggers a conformational change in PDE4A5 that attenuates PDE4A5 interaction with proteins whose binding involves UCR2, such as DISC1 and AIP, but not the UCR2-independent interacting scaffold protein, beta-arrestin. Long PDE4 isoforms thus provide a novel node for cross-talk between the cAMP and p38 MAPK signalling systems at the level of MK2

    Selective SUMO modification of cAMP-specific phosphodiesterase-4D5 (PDE4D5) regulates the functional consequences of phosphorylation by PKA and ERK

    No full text
    Enzymes from the PDE (phosphodiesterase) 4 cAMP-specific PDE family are crucial for the maintenance of compartmentalized cAMP responses in many cell types. Regulation of PDE activity can be achieved via post-translational modification such as phosphorylation by ERK (extracellular-signal-regulated kinase) MAPKs (mitogen-activated protein kinases) and PKA (protein kinase A). In the present paper, we report for the first time that PDE4 isoforms from the PDE4A and PDE4D subfamilies can be selectively modified by SUMO (small ubiquitin-related modifier). We have identified a single SUMO site within a consensus tetrapeptide motif, ΨKXE (where Ψ represents a hydrophobic residue), which lies in the catalytic unit of these enzymes. SUMO modification of PDE4 at this site was observed upon overexpression of the SUMO E3 ligase PIASy [protein inhibitor of activated STAT (signal transducer and activator of transcription) Y] in HEK (human embryonic kidney)-293 cells and we identify PIASy as a novel binding partner for long PDE4 isoforms. Site-directed mutagenesis of the acceptor lysine residue ablated conjugation of PDE4 with SUMO, suggesting the presence of a single SUMO site in the first subdomain of the conserved PDE4 catalytic unit. This observation was supported by both cell-free in vitro SUMOylation assays and analysis of SUMOylated spot-immobilized peptide arrays. SUMO modification of long PDE4 isoforms serves to augment their activation by PKA phosphorylation and repress their inhibition by ERK phosphorylation. Following ligation of β-adrenergic receptors, SUMOylation of PDE4 isoforms sufficiently amplified PKA-stimulated PDE4 activity to reduce markedly the PKA phosphorylation status of the β2-adrenergic receptor. These results highlight a new means whereby cells might achieve the selective regulation of the activity of cAMP-specific PDE4 enyzmes

    Involvement of Hippocampal Jun-N Terminal Kinase Pathway in the Enhancement of Learning and Memory by Nicotine

    No full text
    Despite intense scrutiny over the past 20 years, the reasons for the high addictive liability of nicotine and extreme rates of relapse in smokers have remained elusive. One factor that contributes to the development and maintenance of nicotine addiction is the ability of nicotine to produce long-lasting modifications of behavior, yet little is known about the mechanisms by which nicotine alters the underlying synaptic plasticity responsible for behavioral changes. This study is the first to explore how nicotine interacts with learning to alter gene transcription, which is a process necessary for long-term memory consolidation. Transcriptional upregulation of hippocampal jun-N terminal kinase 1 (JNK1) mRNA was found in mice that learned contextual fear conditioning (FC) in the presence of nicotine, whereas neither learning alone nor nicotine administration alone exerted an effect. Furthermore, the upregulation of JNK1 was absent in beta2 nicotinic receptor subunit knockout mice, which are mice that do not show enhanced learning by nicotine. Finally, hippocampal JNK activation was increased in mice that were administered nicotine before conditioning, and the inhibition of JNK during consolidation prevented the nicotine-induced enhancement of contextual FC. These data suggest that nicotine and learning interact to alter hippocampal JNK1 gene expression and related signaling processes, thus resulting in strengthened contextual memorie
    corecore