13,156 research outputs found

    Temporal disorder in up-down symmetric systems

    Get PDF
    The effect of temporal disorder on systems with up-down Z2 symmetry is studied. In particular, we analyze two well-known families of phase transitions: the Ising and the generalized voter universality classes, and scrutinize the consequences of placing them under fluctuating global conditions. We observe that variability of the control parameter induces in both classes "Temporal Griffiths Phases" (TGP). These recently-uncovered phases are analogous to standard Griffiths Phases appearing in systems with quenched spatial disorder, but where the roles of space and time are exchanged. TGPs are characterized by broad regions in parameter space in which (i) mean first-passage times scale algebraically with system size, and (ii) the system response (e.g. susceptibility) diverges. Our results confirm that TGPs are quite robust and ubiquitous in the presence of temporal disorder. Possible applications of our results to examples in ecology are discussed

    Diversity of plantonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes

    Get PDF
    Mid-trophic pelagic fish are essential components of marine ecosystems because they represent the link between plankton and higher predators. Moreover, they are the basis of the most important fisheries resources; for example, in African waters. In this study, we have sampled pelagic fish larvae in the Eastern Atlantic Ocean along a latitudinal gradient between 37°N and 2°S. We have employed Bongo nets for plankton sampling and sorted visually fish and fish larvae. Using the cytochrome oxidase I gene (COI) as a DNA barcode, we have identified 44 OTUs down to species level that correspond to 14 families, with Myctophidae being the most abundant. A few species were cosmopolitan and others latitude-specific, as was expected. The latitudinal pattern of diversity did not exhibit a temperate-tropical cline; instead, it was likely correlated with environmental conditions with a decline in low-oxygen zones. Importantly, gaps and inconsistencies in reference DNA databases impeded accurate identification to the species level of 49% of the individuals. Fish sampled from tropical latitudes and some orders, such as Perciformes, Myctophiformes and Stomiiformes, were largely unidentified due to incomplete references. Some larvae were identified based on morphology and COI analysis for comparing time and costs employed from each methodology. These results suggest the need of reinforcing DNA barcoding reference datasets of Atlantic bathypelagic tropical fish that, as main prey of top predators, are crucial for ecosystem-based management of fisheries resources

    Interspecific hybridization in pilot whales and asymmetric genetic introgression in northern Globicephala melas under the scenario of global warming

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 11 (2016): e0160080, doi: 10.1371/journal.pone.0160080 .Pilot whales are two cetacean species (Globicephala melas and G. macrorhynchus) whose distributions are correlated with water temperature and partially overlap in some areas like the North Atlantic Ocean. In the context of global warming, distribution range shifts are expected to occur in species affected by temperature. Consequently, a northward displacement of the tropical pilot whale G. macrorynchus is expected, eventually leading to increased secondary contact areas and opportunities for interspecific hybridization. Here, we describe genetic evidences of recurrent hybridization between pilot whales in northeast Atlantic Ocean. Based on mitochondrial DNA sequences and microsatellite loci, asymmetric introgression of G. macrorhynchus genes into G. melas was observed. For the latter species, a significant correlation was found between historical population growth rate estimates and paleotemperature oscillations. Introgressive hybridization, current temperature increases and lower genetic variation in G. melas suggest that this species could be at risk in its northern range. Under increasing environmental and human-mediated stressors in the North Atlantic Ocean, it seems recommendable to develop a conservation program for G. melas.LM had a PCTI Grant from the Asturias Regional Government, referenced BP 10-004. MAS was supported by a 2013 FCT Investigator contract through POPH, QREN European Social Fund and the Portuguese Ministry for Science and Education. This study was also supported by a grant from the Principality of Asturias (reference: GRUPIN-2014-093)

    Northern areas as refugia for temperate species under current climate warming: Atlantic salmon (Salmo salar L.) as a model in Northern Europe

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordIn this work, patterns of geographical genetic diversity in Atlantic salmon Salmo salar were studied across the whole Atlantic arc, as well as whether patterns (and thus genetic population structure) were affected by water temperatures. Salmo salar populations were here characterized using microsatellite loci and then analysed in the light of ocean surface temperature data from across the region. Analysis showed the presence of a latitudinal cline of genetic variability (higher in northern areas) and water temperatures (sea surface temperatures) determining genetic population structure (the latter in combination with genetic drift in southern populations). Under the current global change scenario, northern areas of Europe would constitute refuges for diversity in the future. This is effectively the inverse of what appears to have happened in glacial refugia during the last glacial maximum. From this perspective, the still abundant and large northern populations should be considered as precious as the small almost relict southern ones and perhaps protected. Careful management of the species, coordinated across countries and latitudes, is needed in order to avoid its extinction in Europe.J. L. Horreo was supported by a MINECO Spanish postdoctoral grant (“Juan de la CiervaIncorporación” (ref. IJCI-2015-23618). This work was funded by the European Union INTERREG IIIB programme (Atlantic Salmon Arc Project [ASAP], Project No. 040 and ASAP-2, Project No. 203). This study received additional funding from the Principality of Asturias Grants for Excellent Research (GRUPIN-2014-093) and the Contract CN-14-076

    SPH simulations of thixo-viscoplastic fluid flow past a cylinder

    Get PDF
    Thixotropic materials are complex fluids that display time-dependent viscosity and/or yield-stress response upon the application of a fixed deformation, while recovering their original structured-state when the deformation is discontinued. Thixotropic effects are presents in many different systems and applications, ranging from food products, such as ketchup, to metals, such as molten aluminum. In this work we present a first attempt to simulate the rheological properties of thixo-viscoplastic flows using a Smoothed Particle Hydrodynamic (SPH) method. The study set up is a 2D flow around a circular cylinder as well as a simple shear flow between parallel plates to validate our numerical results. SPH solutions are compared with simulations performed using the open-source Finite Volume Method solver RheoTool, based on OpenFOAM. The viscoplastic model used in this work is the Papanastasiou model combined with a recently developed microstructural one, in order to include thixotropy. In this thixo-viscoplastic framework, we analyze the flow properties in terms of yield-fronts, streamlines and structure-parameter fields at different Bingham and Thixotropy numbers, through microstructural thixotropic and yield-stress parameters variation. Obtained results show an important novelty: an asymmetry in the thixo-viscoplastic flow around the cylinder

    Scanner image methodology (SIM) to measure dimensions of leaves for agronomical applications

    Get PDF
    A scanner image methodology was used to determine plant dimensions, such as leaf area, length and width. The values obtained using SIM were compared with those recorded by the LI-COR leaf area meter. Bias, linearity, reproducibility and repeatability (R&R) were evaluated for SIM. Different groups of leaves were scanned and measured. R&R studies showed that, the lowest SIM’s resolution was nineteen categories. SIM’s R&R ANOVA showed the method’s measurement error was not significant. In the image processing method, the color image was converted to gray scale over the green band and it was segmented using Otsu methodology. The noise produced was cleaned with a median filter. The leaf image was rotated to align the longest parallel line to y-axis or x-axis using central moments. From the centroid using directional erosions the leaf width and length were obtained and recorded.Key words: Leaf area, width, length, digital image analysis, segmentation
    • …
    corecore