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Abstract

Thixotropic materials are complex fluids that display time-dependent viscosity

and/or yield-stress response upon the application of a fixed deformation, while

recovering their original structured-state when the deformation is discontinued.

Thixotropic effects are presents in many different systems and applications,

ranging from food products, such as in ketchup, to metals, such as molten

aluminium. In this work we present a first attempt to simulate the rheological

properties of thixo-viscoplastic flows using a Smoothed Particle Hydrodynamic

(SPH) method. A 2D flow around a circular cylinder set up is used in this study,

alongside a simple shear flow between parallel plates to validate our numerical

predictions. SPH solutions are compared with independent results using the

open-source Finite Volume Method solver RheoTool, based in OpenFOAM. The

viscoplastic model used in this work is the Papanastasiou model. In order to

include thixotropy in the viscoplastic picture, a hybrid constitutive equation is

proposed, in which the Papanastasiou model is combined with a microstructural
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one proposed recently by Le-Cao et al. Phys. Fluids 32 (2020) 123106. Under

such thixo-viscoplastic framework, we analyse the flow properties in terms of

yield-fronts, streamlines and structure-parameter fields at different Bingham

and Thixotropy numbers, through microstructural thixotropic and yield-stress

parameter variation. Here, our main findings come in the form of an asymmetry

about the cylinder, attributed to the thixo-viscoplastic features of the hybrid

model.

Key words: Viscoplasticity, Thixotropy, SPH

1. Introduction

Thixotropy is one of the long-standing and more complex rheological phe-

nomena found in nature [1–4]. Following the recent definition provided by Wei

and Larson [4], ideal thixotropy is defined as a reversible and continuous slow

time-dependent decrease of viscosity and/or yield-stress when a sample is sub-5

jected to a constant shear-rate that induces structural changes in the material

[3–10]. This dissipative response reflects in the development of a thixotropic

time-scale which originates from the time required for the microstructure to

change upon flow [3]. An ideal thixotropic fluid may require a long time to

reach a steady-state in a start-up flow but relaxes quickly or even nearly in-10

stantaneously upon flow cessation [4]. Usual rheological phenomena associated

with thixotropy are shear-thinning, stress overshoots in start-up flow and hys-

teresis [3]. Different materials displaying thixotropy cover a wide range in type

and variety, and are exploited in technological applications, such as colloidal

suspensions and gels, emulsions, polymer, paints, foams, minerals, oils, drilling15

muds, food products, detergents, slurries, biofluids, cosmetics, pharmaceuti-

cals, biomedical materials, ceramics, soils, metals, inks, concrete, among other

[3, 4, 10, 11].

There are two main constitutive modelling paradigms for thixotropic materi-

als: (i) phenomenological continuum-mechanics models and (ii) microstructural20

models [2, 3, 12]. The phenomenological models are based on stress equations,
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which may or may not include viscoelasticity, connected to variables, such as

a structure-parameter [13], viscosity or fluidity [14], which indirectly measure

the material internal structure. The microstructural models aim to quantify the

grade of structuring of the material from more complicated chemical-kinetics-25

like equations measuring the dynamics of formation and breakage of bonds in

the material. In this work, we will assume the phenomenological approach with

a model considering thixotropic and viscoplastic responses via a regularised Pa-

panastasiou model for viscoplasticity and a structure-parameter based equation

for thixotropy. This model follows the ideas proposed by Le-Cao et al. [15].30

Numerical solutions of complex thixo-viscoplastic flow has been tackled in

the past with different algorithms and constitutive modelling approaches. Syrakos

et al. [16] studied the flow past a smooth cylinder with finite-elements, mixing

inertial and thixotropic features using a variant of the Moore constitutive model.

These authors found thixotropic parameters influential in the flow-structure35

(vortex enclosing unyielded patches behind the cylinder without shedding even

when inertia was present) and drag coefficients. In a setting given under a

Bingham-Papanastasiou constitutive model, Mahmood et al. [17] simulated the

flow of a viscoplastic fluid past a cylinder at Re = 20 using a mixed finite element

formulation; this formulation reflects the main features of time-independent40

yield-stress materials with symmetrical flow-fields and larger unyielded regions

as well as drag-coefficients with increasing Bingham numbers. Bui and Ho

[18–20] used Papanastasiou-regularised Bingham and Herschel-Bulkley model

variants alongside a thixo-viscoplastic Moore model. With these and using the

ANSYS commercial software, asymmetrical yield-fronts were reported under in-45

ertial Re = 20 and viscoplastic Bn = 0.2 conditions. Different vortex-phases

resulted, ranging from vortex absence, passing through elongated vortices in

the cylinder wake that enclose solid-like patches, to transient vortex-shedding

at high Reynolds numbers; these kinematic structures decline with plasticity.

Some of the earliest applications of Smoothed Particle Hydrodynamics (SPH)50

to simulate non-Newtonian fluids date back to early 2000s [21, 22] where dif-

ferent types of viscoelastic models where simulated. Since then, it has been
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successfully used to model different kinds of non-Newtonian fluids including

viscoplasticity. In particular, the range of applications of the SPH model to the

simulation of viscoplastic flows goes from debris, sediment and granular flows55

(see e.g. [23], [24], [25], [26], [27] or [28]), to multiphase flows (see e.g. [29], [30]

or [31]) and to fluid/structures interactions (see e.g. [32] or [33]).

Despite the large number of applications, SPH models have been used for

validation of the viscoplastic fluids, in terms of Poiseuille or Couette flows only

(see e.g. [34], [35], [26] and [28]), or in comparisons with experimental results60

(see e.g. [23], [29] and [26]). However, rigorous complex flow validations, such

as the ones in [36] and [37], in terms of yielded and un-yielded regions for the

2D viscoplastic flow around a cylinder, can not be found in literature.

In addition, the use of SPH to model thixotropic fluids can be found only in

few studies: one related to free surface flow in dam-break applications [38] and65

the other related to the interfacial-flows in the ascent of bubbles in thixotropic

materials e.g. [39].

The aim of this study is to accurately analyse the 2D thixo-viscoplastic

fluid flow around a cylinder using a Smoothed Particles Hydrodynamics (SPH)

method. The paper is divided into four main sections. In Sec. 2 the SPH70

model is discussed, together with details about the fluid (Sec. 2.1) and the

solid boundary conditions (Sec. 2.2). In Sec. 3 the viscoplastic Bingham model

and the Papanastasiou regularization are presented, together with their vali-

dation (Sec. 3.1) on both simple shear (Sec. 3.1.1) and flow around a cylinder

(Sec. 3.1.2) cases. In Sec. 4, the thixotropic model used is described: Sec. 4.175

contains the model validation using simple shear cases, while Sec. 4.2 the re-

sults obtained analysing the flow around the cylinder. In Sec. 5 a brief and

comprehensive overview of the study and conclusions are given.

2. The SPH model

In this section, the SPH method used in this work is presented. The method80

description is divided in different subsections, as follows: in Sec. 2.1, details of
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the solvent medium are given, while in Sec. 2.2, the solid boundary conditions

are described.

2.1. Suspending fluid

The SPH method is a mesh-less Lagrangian model, in which the momentum

equations describing the motion of the suspending fluid are discretized by a set

of NSPH points termed fluid particles. Positions and momenta of every fluid

particle evolve according to the following equations (obtained modifying the

original model presented in [40] for fluids with non-constant viscosities):




ṙi = vi,

mv̇i =−
�

j

�
Pi

d2i
+

Pj

d2j

�
∂W (rij)

∂rij
eij+

+
�

j

�
D

3
+ 9

��
ηi + ηj

2

�
∂W (rij)

∂rij

eij · vij

didjrij
eij ,

(1)

where m is the fluid particle mass, i = 1, .., NSPH is the fluid particle index, Pi85

the pressure of particle i, eij = rij/rij the unit vector joining particles i and

j, ηi is the viscosity of particle i and vij = vi − vj their velocity difference.

di =
�

j W (rij , rcut) is the number density of particle i estimated as a weighted

interpolation with kernel function W with compact support rcut [40], while D

is the number of dimensions of the system. Using this definition, continuity90

equation for the mass density ρi = mdi is automatically satisfied.

If the fluid is Newtonian, ηj = const. for each SPH particle j = 1, ..., NSPH ;

in the case of a non-Newtonian fluid, the viscosity is allowed to vary on each

SPH particle depending on the specific constitutive model used. Two different

non-Newtonian fluid models are studied in this work: a Papanastasiou model95

for viscoplastic fluids, that is described in Sec. 3, and a thixo-viscoplastic model

that is described in Sec. 4.

The Newton’s equations of motion Eq. (1) are a discrete representation of

the momentum Navier-Stokes equation in a Lagrangian framework: the first
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summation in Eq. (1) determines the pressure gradient term, while the second

specifies the viscous forces. A quintic spline kernel [41] with cut-off radius

rcut = 4Δr is used for the weighting function W [42], where Δr is the mean

fluid particle separation. Finally, the following equation-of-state is used for the

pressure:

Pi = p0

��
ρi
ρref

�γ

− 1

�
, (2)

where ρref = 0.99ρ0 ensures a positive pressure field and the input parame-

ters ρ0, p0 and γ are chosen to have a speed of sound cs =
�
γp0/ρ0 larger

than any other velocity present in the problem, therefore enforcing approximate100

incompressibility [43].

2.2. Solid boundary conditions

Solid walls of arbitrary shape can be modelled using boundary particles sim-

ilar to fluid ones as follows [44]. For each solid region and in order to impose the

no-slip boundary conditions, several layers of boundary particles are generated105

inside it using an ad-hoc algorithm. Boundary particles, located inside the solid

region, interact with fluid particles through the same SPH forces as described

in Eq. (1). To impose the no-slip boundary conditions, the velocity of bound-

ary particles should be prescribed. In this work, we follow the approach used

in [44], i.e. solid particles are considered neutrally buoyant with density equal110

to the equilibrium solvent density and the velocities of boundary particles are

evaluated using the approach in [41].

To evaluate the boundary-particle velocity let us consider the situation with

a fluid particle f near a solid boundary. In this case, the algorithm first calculate

the nearest solid surface point s to the fluid particle f in order to define the

tangent plane in s. Afterwards, the algorithm assign the following velocities to

the boundary particles:

vb = −
�
db
df

�
(vf − vs) + vs, (3)

where db is the normal distance of the boundary particle from the tangent plane,

df is the distance of the fluid particle from the surface point s and vf is the
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fluid particle velocity. vs is the velocity of the surface point s of the boundary115

region.

3. The Bingham model and the Papanastasiou regularization

Viscoplastic fluids combine solid-like and fluid-like features (see e.g. [5, 6,

9, 45]). Many of these materials can be described introducing a yield stress τy,

that is, a critical stress value below which no flow occurs. Then, at stresses

smaller than τy, these materials appear with absence of flow behaving as a rigid

body, while they exhibit a fluid-like response at higher stresses. Various models

have been introduced to describe this kind of materials such as the Bingham

[46], Herschel-Bulkley [47] or the Casson [48] models but they all present a

discontinuity when the shear stress equals the yield stress. In order to avoid

this discontinuity various kinds of regularization have been presented such as the

Bercovier and Engelman [49] or the Glowinski [50] (for a complete presentation

of the viscoplastic model and their regularization the reader may refer to[9]).

In this paper we adopt the Papanastasiou regularization [51] applied to the

Bingham model: 



η = η∞ +
τy
γ̇

�
1− e−mγ̇

�
,

τ =

�
η∞ +

τy
γ̇

�
1− e−mγ̇

��
γ̇,

(4)

where τ is the stress tensor, γ̇ is the strain-rate tensor defined as:

γ̇ = (∇v) + (∇vT ), (5)

η is the shear viscosity coefficient and η∞ is the limiting viscosity attained at

large shear-rates. m is is the Papanastasiou exponential regularization parame-

ter, which controls the stress exponential growth. The strain-rate tensor second

invariant γ̇ can be evaluated as:

γ̇ =

�
1

2
Πγ̇ =

�
1

2
{γ̇ : γ̇}

�1/2
, (6)

while the strain-rate tensor second invariants τ is given by:

τ =

�
1

2
Πτ =

�
1

2
{τ : τ}

�1/2
= η∞γ̇ + τy

�
1− e−mγ̇

�
. (7)
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It is now possible to define a criterion to track yielded/un-yielded regions based

on the stress, i.e. the viscoplastic material will flow only when the magnitude

of the stress tensor τ is larger then the yield stress τy:




yielded : τ > τy,

un− yielded : τ ≤ τy.
(8)

The Bingham model with the Papanastasiou regularization does not take into

account the elasticity or any temporal relaxation and it is based on the following

assumptions: the fluid material structure is isotropic and the trace of the stress120

tensor is always equal to zero. Moreover, the adopted yielding criterion in

Eq. (8) is based on a single invariant, the stress tensor second invariant, and

corresponds to the von Mises yielding criterion [52] (see e.g. [53]).

Fig. 1 shows the comparison (in terms of shear-stress modulus and viscosity)

between the Bingham model and the Papanastasiou regularization for different

values of m. It is interesting to note that the Papanastasiou regularization,

Figure 1: Left: non-dimensional shear stress and Right: non-dimensional viscosity as functions

of the non-dimensional shear rate for different values of m. Continuous lines represents the

Bingham model. Dotted lines represent the Papanastasiou regularization.

while eliminating the singularity present in the Bingham model, modifies also

the τ and η values in the limit of low shear rates, in particular introducing

a finite viscosity in the limit γ̇ → 0, thus providing an apparent yield-stress

response in the plastic features [5, 8]:




γ̇ → 0 : η = η∞ +mτy, τ = 0,

γ̇ → ∞ : η = η∞, τ = η∞γ̇.
(9)
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In the context of the SPH method presented in this paper, the expressions

in Eq. (5) for the strain-rate tensor, in (6) for the stress and strain-rate tensors125

second invariants, as well as Eq. (4) for η and τ , are used to evaluate these

quantities for each SPH particle.

It is important to note that for each SPH particle the velocity gradient tensor

appearing in Eq. (5) will be evaluated using the following expression:

(∇v)µνi =
�

j

(vµ
i − vµ

j )(r
ν
j − rνi )

djrij

∂W (r)

∂r

����
r=rij

, (10)

where i, j are the SPH particle indices, µ and ν are the column and row indexes

respectively µ, ν = 1, ..., D, where D is the number of dimensions of the system,

rij is the modulus of the vector joining particles i and j, dj is the number130

density of particle j and ∂W (r)
∂r

���
r=rij

is the corresponding gradient of the kernel

function.

It is interesting to highlight that the SPH time-step, following [41] and [44],

is given by:

Δt = 0.125
�rcut

3

�2 ρf
η
, (11)

that is, the time-step is inversely proportional to the fluid viscosity. Hence,

particular attention must be paid to the choice of the time-step when using the

Papanastasiou model. In this case, as shown by Eq. (4), the viscosity depends135

on the model parameter and attains its maximum value for low shear-rates. As

shown in (9) for fixed η∞ and τy, the time-step reduces for increasing m. Corre-

spondingly, m should be chosen sufficiently large in order for the Papanastasiou

model to be close enough to the Bingham model but not unnecessarily large in

order to avoid too small time-steps. In some situations, the presence of a true140

yield-stress is also arguable, making viscous models of this type more realistic

[5, 8].

3.1. Model validation

The viscoplastic Papanastasiou model has been tested on selected 2D test

cases. The obtained results have been compared to theoretical solutions, when145
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available, and to the results obtained through an alternative Finite Volume

Method (FVM) solver: the OpenFoam set of subroutines for rheological simu-

lations Rheotool. OpenFOAM is an open-source finite-volume library able to

handle general dynamic unstructured polyhedral meshes, multiphase and multi-

physics problems. Two viscoelastic solvers are readily available in OpenFOAM.150

viscoelasticFluidFoam was developed by [54] and has been the ground for many

works [55–58]. Additional non-released developments have been published aim-

ing at multiphase problems [59, 60], and improved stabilization mechanisms

[57, 61].

In order to make advanced viscoelastic numerical methods available to the155

OpenFOAM comunity, Pimenta et al. developed RheoTool [62] and made it

publicly available. RheoTool includes many simulation capabilities, including

molecular simulations, electrically driven flows or multiphase simulations. It

covers a plethora of constitutive equations and has many numerical stabilization

capabilities such as log-conformation methods [63], convective high-resolution160

schemes, and different pressure-velocity-stress coupling mechanisms.

3.1.1. Simple shear

Three sets of SPH simulations have been performed to test the rheology

of the Papanastasiou model using the following values for the regularization

parameter m = {10, 20, 50}. The fluid domain is a square box of size L = 10

and, in order to impose a uniform shear flow γ̇, two rigid plates are considered

in the planes normal to the y-direction, moving in opposite directions along the

x -axis. Periodic boundary conditions have been set in the x -direction. For all

the solutions presented in this section, the SPH resolution used is L/Δr = 50,

where Δr is the mean particle spacing. The total number of SPH particles

in this case is NSPH = 2500. The fluid viscosity, density and yield stress are

η∞ = 15, ρ = 1.0 and τy = 10.0, respectively. The overall fluid viscosity and

shear-stress is measured directly from the time-averaged tangential force acting

on the walls, i.e.:

η(γ̇) =
Fx

Aγ̇
; τ =

Fx

A
, (12)

10



where A is the surface of the plates. The obtained results are shown in Fig. 2,

where their comparison against the second invariants computed from Eq. (4)

shows good agreement.

Figure 2: Mean viscosity (left) and shear stress (right) as a function γ̇. Simulations were

performed using three different values of m and fixing η∞ = 15.0, ρ = 1.0 and τy = 10.0.

Results are compared with the theoretical value given by Eq. (4). The shear-rate has been

made non-dimensional using γ̇0 = 1 as a characteristic shear-rate.

165

3.1.2. 2D flow around a cylinder

Computational setup

To simulate the flow around a cylinder we use the following setup as described

in Fig. 3: two rigid plates are considered on the top and bottom boundaries

moving in the x direction with constant velocity U0 = 1. Periodic boundary170

conditions have been set on the left and right boundaries where velocity is free

to be calculated and transmitted by periodicity.

Figure 3: Computational setup for the 2D simulations of the flow around a cylinder.

11



In all the following simulations the cylinder radius is R = 1, the cylinder

and fluid densities are both equal ρc = ρf = 1, fluid viscosity for high shear-rate

is η∞ = 15, the speed of sound is csound = 150, the number of SPH particles175

on the cylinder radius is NR = R/Δr = 20 and we use 4 SPH particles on

the SPH cut-off radius, rcut/Δr = 4. This choice of parameters was shown to

lead to convergence results in [42]. Following the analysis reported in [36] the

parameter m = 10 has been chosen here.

Simulations results

To correctly analyse and study the flow around an infinite cylinder immersed

in a viscoplastic fluid, the Reynolds number is no longer sufficient to describe

the physics of the problem but there is the need to introduce another non-

dimensional quantity, i.e. the Bingam number Bn which is defined as the ratio

of yield stress to a characteristic viscous stress (in this case referred to that

found under η∞) in the following way:

Bn =
2τyR

η∞U0
. (13)

Bn close to zero means that the viscous stresses are much larger the the yield180

stress, for which a viscous response dominates. On opposite, Bn >> 1 means

that τy is much larger than the viscous stresses and the fluid displays a vis-

coplastic solid-like response.

Simulations have been performed using three different Bingham numbers

Bn = {0.1, 1.0, 10.0} and the corresponding SPH solutions are compared against185

those obtained with the FVM-based Rheotool software. In particular we com-

pare, for the same problem setup, the yielded (depicted in white) and un-yielded

(depicted in black) regions attained at steady-state using the yielding criterion

given by Eq. (8). In order to remove small fluctuations from the plotted fields,

the yield-fronts shown here for the SPH simulations are obtained averaging over190

at least ten time steps after reaching the steady-state.

A first set of simulations have been performed using Lx = 12R and Ly = 4R.

In this case, the total number of SPH particles is NSPH = 19200 and an example

of the initial particle distribution can be seen in left plot of Fig. 4.
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The mesh used for the FVM simulations has been generated using the Open-195

FOAM utility blockMesh meshing a quarter of the total geometry and then

mirroring on the x-direction. An example of the mesh used for the FVM simu-

lations can be seen in right plot of Fig. 4. Three different domains where used

to generate the whole mesh: one domain is used to discretize the pipe (blue

region in the right plot of Fig. 4) and two domains are used to generate the grid200

around the quarter sphere (green and red regions in right right plot of Fig. 4).

For the Lx = 24 domain, the pipe region is subdivided into 120 cells in the

x-direction and 70 cells in the y-direction with a vertical first to last expansion

ratio of 3. The regions around the quarter sphere are subdivided in 70 cells in

angular direction with an expansion ratio of 3 (to be conformal with the pipe205

region). Same geometrical values where kept for the Lx = 12 domain, but a

subdivision of 50 cells were used in the x-direction to account for the shorter

geometry.

Figure 4: Left: close-up view of the initial SPH particles distribution around the cylinder.

Fluid particles are displayed in red why the walls in black. Right: close-up view around the

cylinder of the Rheotool mesh.

In Fig. 5, SPH versus FVM yield-fronts are compared for Lx=12. A fairly

good agreement is obtained for the two numerical algorithms. Bn-increase210

brings about the growth of unyielded regions at the geometry centre-line and

the rising of triangular unyielded patches with base on the upper and lower

walls, accompanied by relatively smaller semicircular on the cylinder equator.

As expected, fore-aft symmetry is retained with Bn-rise in these viscoplastic

13



solutions.215

In Fig. 6, a second set of steady-state solutions are illustrated for the yield-

fronts using the same Bingham numbers as in Fig. 5, but changing the domain

length in the x-direction to Lx = 24. In this case the number of SPH particles

used is NSPH = 38400. It is interesting to note that for Bn ≥ 1.0, small un-

yielded islands are present over the cylinder poles. These un-yielded islands220

grow in size with Bn-increase, accompanied by triangular un-yielded regions

on the top and bottom walls upstream and downstream of the islands, and

relatively diminished semicircular patches on the equator in both sides of the

cylinder.

A convergence study is performed next. This study is important to see225

whether it is possible to reduce the resolution while still being able to ac-

curately capture all the flow features. The flow around an infinite cylinder

is simulated using Lx = 24 and varying the number of points on the cylin-

der radius NR = {5, 10, 20}, corresponding to a total numer of SPH particles

of NSPH = {2400, 9600, 38400}. Yielded and un-yielded regions obtained at230

steady-state for the three different resolutions and the two Bingham number

used are shown in Fig. 7. The general shape of the yielded regions are well re-

produced in all three simulations. However, only the simulations with NR = 20

are able to capture quantitatively the small un-yielded islands in the poles of

the cylinder.235

In Fig. 8, the yielded regions together with the local viscosity for the flow

around a cylinder with Lx = 24 are reported. The local viscosity has been

evaluated using Eq. (4). In this case it is interesting to note that the un-yielded

regions (black regions in the left plots of Fig. 8) correspond in size and location

to the regions of higher viscosity (colored in red in the right plots of Fig. 8).240

Finally, a last set of simulations has been performed at Bn = 10.0 while

varying m = 10, 20, 50 to check the effect of the regularization parameter on

the yielded regions. As shown in Fig. 9 the yielded regions are very similar for

all the three regularization parameters used while the viscosity inside the un-

yielded regions increases for increasing m as expected from Eq. (4). This means245
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that using m = 10 is a good compromise between low computational time and

physical accuracy: as shown by Eq. (11) the computational time step decreases

with increasing viscosity while the viscosity increases for increasing m, as shown

by Eq. (4).

SPH FVM

Bn = 0.1

Bn = 1.0

Bn = 10.0

Figure 5: Viscoplastic SPH model; comparison between SPH (left) and FVM (right) simula-

tions for the case Lx = 12. From top to bottom: Bn = {0.1, 1.0, 10.0}.
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SPH FVM

Bn = 0.1

Bn = 1.0

Bn = 10.0

Figure 6: ºtextcolorblueViscoplastic SPH model; comparison between SPH (left) and FVM

(right) simulations for the case Lx = 24. From top to bottom: Bn = {0.1, 1.0, 10.0}.

Bn = 1.0 Bn = 10.0

NR = 5

NR = 10

NR = 20

Figure 7: Viscoplastic SPH model for the flow around an infinite cylinder using three different

resolutions. From top to bottom NR = {5, 10, 20}. Left column Bn = 1.0. Right column

Bn = 10.0.
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Yield-fronts η/η∞

Bn = 0.1

Bn = 1.0

Bn = 10.0

Figure 8: Viscoplastic SPH model for the 2D flow around a cylinder with Lx = 24. From top

to bottom Bn = {0.1, 1.0, 10.0}.

Yield-fronts η/η∞

m = 10

m = 20

m = 50

Figure 9: Viscoplastic SPH model; yield-fronts (left) and local viscosity (right) plots for the

2D flow around a cylinder with Lx = 24 and Bn = 10.0. From top to bottom m = {10, 20, 50}.
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4. Thixo-viscoplastic models250

Thixotropy is common in a wide range of complex fluids exhibiting a time-

dependent response to applied stresses. When no stress is applied, at a micro-

scopic level, a structured network (e.g. attractive particles or chains) is formed

that can resist to applied stresses without flowing up to a certain threshold.

When the applied forces become larger than a given threshold, the structured255

network starts to break down reducing the resistance of the fluid to flow. This

micro-structure network requires time to build up and break down resulting in

a thixotropic time scale that reflects in a transient rheology of these materials.

Following [64], it is possible to describe the micro-structural behaviour of

these fluids introducing a micro-structure scalar parameter f defined in [0 : 1]:260

when f = 1 the micro-structure is defined as fully developed, while f = 0 means

that the micro-structure has been completely destroyed.

In this paper, we use the micro-structure model described by Le-Cao et

al. [15] to extend the viscoplastic Papanastasiou model described in Sec. 3 to

include also thixotropic effects.265

Following [15], the equation describing the time-evolution of the micro-

structure parameter f is given by:

ḟ = a− (a+ bγ̇)f, (14)

where ḟ = df/dt is the Lagrangian time-derivative of the structure parameter,

while a and b are constants. In this case, a and bγ̇ can be interpreted as the

rate of build-up and break-down of the micro-structure network. In particular,

the parameter a will play a special role when studying the rheology of these

fluids, since λ0 = 1/a is associated to the characteristic thixotropic time scale.

Introducing β = b/a, that is, the ratio between the build-up and break-down

parameters, it is possible to rewrite Eq. (14) in the following way:

ḟ =
1− (1 + βγ̇)f

λ0
. (15)

Eq. (15) can be integrated over time to obtain the following exact solution:

f =
1

1 + βγ̇

�
1− e−

(1+βγ̇)t
λ0

�
+ f0e

− (1+βγ̇)t
λ0 , (16)

18



where f0 is the initial condition for f . It is noteworthy that if β → 0, i.e. the

build-up parameter is large compared to that of break-down (a >> b), then

f → 1 and the microstructure network tends to its highest level. Conversely, if

β → ∞, i.e. the build-up parameter is significantly smaller compared to that of

break-down (a << b), then f → 0 and the microstructure network is completely270

destroyed.

Eq. (15) admits also a solution at equilibrium for t → ∞ given by:

fe =
1

1 + βγ̇
. (17)

Notably, from Eq. (17), if γ̇ = 0, then fe = 1, meaning that, at equilibrium, if

no shear-rate is applied to the fluid, the micro-structure network is at its highest

level and the fluid is not flowing. On the other hand, if γ̇ → ∞, then fe → 0,

meaning that the micro-structure network is completely destroyed.275

Eq. (4) for viscoplastic fluids can be modified to include thixotropy in the

following way:




η = η∞(1 + αf) +
fτy
γ̇

�
1− e−mγ̇

�
,

τ =

�
η∞(1 + αf) +

fτy
γ̇

�
1− e−mγ̇

��
γ̇,

(18)

where α is a constitutive constant.

The extreme responses of this new thixo-viscoplastic model are, on the one

hand, when f = fe = 1, i.e. for γ̇ → 0, the viscosity displayed in Eq. (18)

reaches its maximum value equal to:

η = η∞(1 + α) +mτy.

On the other hand, when f = fe = 0, i.e. when γ̇ → ∞, the viscosity reduces to

η = η∞ reflecting a material with a Newtonian fluid viscosity equal to η = η∞.

It is possible to define a criterion to track the yielded/unyielded regions also

for a thixo-viscoplastic fluid by modifying the criterion given in Eq. (8) and

taking into account the structure parameter f , as follows:



yielded : τ > fτy,

un− yielded : τ ≤ fτy.
(19)
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4.1. Model validation: simple shear

A first group of SPH simulations have been performed to test the thixo-280

viscoplastic model rheology. As in the case of the viscoplastic Papanastasiou

model in Sec. 3.1.1, the fluid domain is a square box of size L = 10 and, in

order to impose a uniform shear flow, two rigid plates are considered in the

planes normal to the y-direction, moving in opposite directions along the x-

axis. Periodic boundary conditions have been set in the x-direction. For all285

the solutions presented in this section, the SPH resolution used is L/Δr = 50,

where Δr is the mean particle spacing. The total number of SPH particles in

this case is NSPH = 2500. The fluid viscosity and density are η∞ = 15 and

ρ = 1.0, respectively, while the structure-parameter initial condition is imposed

at f0 = 1, which implies a fully structured material at the start of the simulation.290

The overall fluid viscosity and shear-stress are calculated with Eq. (12) directly

from the time-averaged tangential force acting on the walls.

In order to minimize fluid inertial effects and to be able to accurately capture

the transient behaviour of the thixo-viscoplastic model, the parameters a and

b of Eq. (14) must be chosen such that λ0 > L2/ν, where ν = η∞/ρ. For this295

reason, we choose λ0ν/L
2 = 6 and β = 1.

A first set of simulations have been performed taking τy = 0 and varying the

constitutive parameter α = {1, 2, 4}. Steady-state solutions in the form of non-

dimensional viscosity and shear-stress are shown in Fig. 10, while Fig. 11 shows

the viscosity transient evolution for two values of γ̇ = {0.1, 0.9} and α = 1.300

In the transient case, time has been made non dimensional as t� = tν/L2,

where L is the fluid-domain height. Solutions are compared against the theo-

retical values obtained from Eq. (16), Eq. (17) and Eq. (18). This comparison

shows a good agreement between simulations and theory for both the steady

and transient shear viscosity and shear-stress.305

A second set of simulations for a thixo-viscoplastic fluid have been performed

using α = 1.0 and yield stress τy = 10, while varying m = {10, 20, 50}. Solutions
for the steady viscosity and shear stress are shown in Fig. 12, while Fig. 13

shows the transient η and τ response under γ̇ = {0.0005, 0.009, 0.1, 0.3, 0.9} and
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Figure 10: Thixo-viscoplastic SPH model. Steady shear viscosity (left) and shear stress (right)

as a function γ̇. Simulations were performed using three different values of α = {1, 2, 4} and

fixing η∞ = 15.0, ρ = 1.0 and τy = 0.0. Results are compared with the theoretical values

given by Eq. (18) and Eq. (17) .

Figure 11: Thixo-viscoplastic SPH model. Viscosity transient-evolution for two different

values of γ̇ = {0.1, 0.9} and α = 1. Simulations were performed fixing η∞ = 15.0, ρ = 1.0 and

τy = 0.0. Results are compared with the theoretical values given by Eq. (16) and Eq. (18)..

m = 10. These numerical solutions agree with those provided by theory in

Figure 12: Thixo-viscoplastic SPH model. Steady viscosity (left) and shear stress (right) as a

function γ̇. Simulations were performed using three different values of m = {10, 20, 50} and

fixing η∞ = 15.0, ρ = 1.0, α = 1.0 and τy = 10.0. Results are compared against theoretical

values given by Eq. (17) and Eq. (18).

310
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Figure 13: Thixo-viscoplastic SPH model. Viscosity (left) and shear stress (right) transient

evolution for five different values of γ̇ = {0.0005, 0.009, 0.1, 0.3, 0.9} and m = 1. Simulations

were performed fixing η∞ = 15.0, ρ = 1.0 and τy = 10.0. Results are compared with the

theoretical values given by Eq. (16) and Eq. (18) .

Eq. (16) and Eq. (18). It is important to note that all these simulations started

with a fully developed fluid microstructure (f0 = 1) in order to test the ability

to correctly capture the microstructure destruction.

In order to further examine the ability of the thixo-viscoplastic SPH model

to resolve the transient response given by theory, a third set of simulations has315

been performed. In Fig. 14, transient solutions are provided in terms of viscosity

and shear-stress against step-changes of shear-rate, for which the microstructure

dynamics (structure build-up and break-down) is recorded. The simulation

protocol under shear-rate imposition (depicted at the bottom of Fig. 14) for

these transient solutions is: the calculation starts under a reference shear-rate320

of γ̇ = 0.1 and, after reaching the corresponding steady-state, the shear-rate

is suddenly to γ̇ = 0.9. After reaching the new steady-state, the shear-rate

is switched back to the reference value of γ̇ = 0.1. Then, after steady-state

attainment, a decrease of shear-rate towards γ̇ = 0.01 is imposed, followed

by a last step back to the reference shear-rate value. As it is apparent in325

Fig. 14, numerical solutions obtained with our thixo-viscoplastic SPH model

concur with those obtained theoretically using Eq. (18), where dimensionless

viscosity and shear-stress display transient phases as a response to the shear-

rate step-changes. Bottom plots of Fig. 14 shows the different shear rates used

for this set of simulations.330

Finally a convergence test have been performed using the case reported in
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Figure 14: Thixo-viscoplastic SPH model. Viscosity (top) and shear stress (center) transient

evolution changing the shear rate. The simulation protocol under shear-rate imposition, de-

picted in the bottom plot, for these transient solutions is: (i) the calculation starts under a

reference shear-rate of γ̇ = 0.1, (ii) after reaching the corresponding steady-state, the shear-

rate is suddenly to γ̇ = 0.9. (iii) After reaching the new steady-state, the shear-rate is switched

back to the reference value of γ̇ = 0.1. This process is then repeated lowering the shear-rate

to γ̇ = 0.01.

Fig. 14: transient solutions are provided in terms of viscosity against step-

changes of shear-rate using three different resolutions L/Δx = 25, 50, 100. Ob-

tained results are shown in Fig. 15 where the viscosity transient evolution is

compared with the exact solution given by Eq. (18). The error with respect to
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Figure 15: Thixo-viscoplastic SPH model. Convergence study using three different resolutions

L/Δx = 25, 50, 100 for the case of Fig. 14. The results obtained for the viscosity transient

evolution is compared with the exact solution given by Eq. (18). Bottom right plot depicts

the error, evaluated using Eq. (20) with respect to the analytical solution, as a function of the

resolution. In this case the Order of convergence is between 1 and 2.

the theoretical solution have been evaluated using and L2 norm

EL2 =

��
|ηSPH(t)− ηtheo(t)|2dt�

|ηtheo(t)|2dt

�1/2

(20)

where ηSPH is the viscosity evaluated from the simulation and ηtheo is the one

given by Eq. (18).

Bottom right plot of Fig. 15 shows the errors evaluated using Eq. (20) as a

function of the resolution. The order of convergence is between 1 and 2, as ex-

pected with SPH when analysing on quantities involving the velocity derivatives335

or their combinations as shown in [65] and [66].

24



4.2. 2D flow around a cylinder

In this section, the 2D flow around a circular cylinder of a thixo-viscoplastic

fluid described by Eq. (18) is investigated. In order to correctly analyse and

describe the physics of these flows, another non-dimensional quantity will be

used, the Thixotropy number Th, defined as [4]:

Th =
b

a
γ̇∗ =

bU0

aR
. (21)

where γ̇∗ = U0

R is the characteristic shear rate of the problem. For Th close

to zero, f relaxes quickly to 1 and a pure viscoplastic Papanastasiou model is

recovered, while Th >> 1 means that the microstructure network is completely340

destroyed.

Simulations are performed using three different Bingham numbers Bn =

{0.1, 1.0, 10.0}. For each Bn, thixotropy is considered with three different Th-

levels under Th = {0.5, 1.0, 2.0} while keeping λ0 = 4 constant. In Fig. 16-

Fig. 19, steady-state solutions are analysed in terms field-plots of time-averaged345

yield-fronts, local viscosity, structure parameter and streamlines, and they are

compared, whenever possible, to the results obtained with the Papanastasiou

viscoplastic model described in Sec. 3. The same computational setup used for

the simulations presented in Sec. 3 and represented in Fig. 3 has been used with

Lx = 24, η∞ = 15 and U0 = 1.350

In Fig. 16, yield-fronts reveal a complex phenomenology with the change of

Bn and Th.

Under fixed Th=0 (viscoplastic solutions), the growth of slender un-yielded

regions are recorded with origin on the channel centre that widen with Bn-

increase. In the extreme case of Bn=10, the solidified material nearly covers the355

whole channel cross-section away from the obstacle, with yielded fluid moving

between the solid-like material and the channel walls. The boundary of the un-

yielded material patches take a rounded shape when approaching the obstacle

and the growth of isolated islands with base on the poles of the cylinder is

registered alongside triangular solid-like patches attached to the walls.360
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Inclusion of thixotropy through Th-increase brings asymmetry to this phe-

nomenology. Here, in contrast to the viscoplastic Th = 0-case, the thixo-

viscoplastic Th = 2 solution appears with asymmetric yield-fronts with respect

to the cylinder axis; i.e. the un-yielded region upstream of the cylinder blocks

the channel with a wider and more blunt solid-profile than that downstream of365

the obstacle. In addition, the triangular solid-like patches on the channel walls

and the islands located on the cylinder poles appear smaller. These changes

in yield-fronts may be correlated with the structure-dependent response of the

thixo-viscoplastic fluid, for which viscosity and yield-stress contributions hold

an explicit functionality with the structure parameter, as specified in Eq. (18).370

Such findings are supported by the structure-parameter and viscosity plots

in Fig. 17 and Fig. 18, respectively, where a one-to-one correspondence on lo-

cation and strength in the structure and yield-front display is recorded. Here,

at fixed thixo-viscoplastic Th = 2 level, Bn-increase provokes the growth of

red zones of relatively high structure-parameter and viscosity values; these pro-375

gressively cover the channel cross-section with Bn-rise, leaving thin gaps of

un-structured low-viscosity material near the channel walls at Bn = 10. This is

accompanied by blue zones near the cylinder surface that indicate the presence

of fluidised material in those shear-dominated regions; this blue regions elongate

behind the obstacle, creating a tail-like feature, more prominent with Bn-rise.380

The un-yielded front behind the cylinder appears weaker and somewhat smaller

compared to that upstream.

In Fig. 19 streamline patterns are plotted for the same Th-Bn domain. Here,

conspicuously, the asymmetry recorded is yield-fronts, structure-parameter and

viscosity is absent in the flow kinematics. Nevertheless, it is noteworthy the in-385

crease of flow-rate apparent on Bn = 10 solutions, with stronger red streamlines

passing around the cylinder for all Th instances.
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Figure 16: Comparison of yield-fronts using different value of Th and Bn: from top to bottom

Th = {2.0, 1.0, 0.5}, from left to right Bn = {0.1, 1.0, 10.0}. The pure viscoplastic case has

been reported in last row for comparison.

Figure 17: Comparison of structure-parameter fields using different values of Th and Bn:

from top to bottom Th = {2.0, 1.0, 0.5}, from left to right Bn = {0.1, 1.0, 10.0}.
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Figure 18: Comparison of viscosity fields using different value of Th and Bn: from top to

bottom Th = {2.0, 1.0, 0.5}, from left to right Bn = {0.1, 1.0, 10.0}.

Figure 19: Comparison of streamlines using different value of Th and Bn: from top to bottom

Th = {2.0, 1.0, 0.5}, from left to right Bn = {0.1, 1.0, 10.0}.

5. Conclusions

In this work the 2D viscoplastic and thixo-viscoplastic flow around a cylinder

is simulated using an SPH method. The most important novelty introduced in390

this paper is the use of an SPH method to simulate these kind of flows and in

particular on a rigorous validation of the fluid-structure interaction in terms of

yielded and un-yielded regions for the viscoplastic flow around a cylinder and

effect of thixotropy. The Bingham viscoplastic model with the Papanastasiou

regularization was introduced in the SPH method to simulate apparent yield395
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stress fluids. The validation was performed in two set of simulations. A first set

was considered to test the fluid rheology under viscometric conditions keeping

the yield stress constant while varying the applied shear-rate. The obtained

results have been successfully compared with the theoretical ones. A second set

of numerical experiments was performed to test the SPH ability to reproduce400

the interaction of a viscoplastic fluid with a cylinder in terms of yielded and un-

yielded regions. In this case, tests were performed varying the Bingham number

and obtained SPH results compared to the ones of a FVM (i.e. RheoTool) solver

with a good level of agreement.

To describe thixotropic behaviour, a microstructural parameter was intro-405

duced which determines the amount of network developed within a Lagrangian

element. The dynamics of this parameter follows a shear-dependent construc-

tion and relaxation dynamics. A first set of simulations was performed to test

the fluid rheology keeping the yield stress and the thixotropy micro-structure

parameters constant while varying the applied shear-rate. The obtained results410

have been successfully compared with the theoretical ones. A second set of

simulations was performed to investigate the interaction of a thixo-viscoplastic

fluid with a cylinder. In this case, a Thixotropy number was introduced, which

is defined as the ratio between the micro-structure build-up and break down

time-scales. Simulations were performed by varying the Bingham as well as415

the Thixotropy numbers over a wide regime. Obtained results showed that

thixotropy generates an asymmetry within the fluid flow around a cylinder,

particularly evident for high Bingham and Thixotropy numbers.

The current validated thixo-viscoplastic SPH model will be used in the future

to explore the rheology of complex thixotropic particle suspensions, following420

the work done in [67] with viscoelastic matrices.
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