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The effect of temporal disorder on systems with up-down Z, symmetry is studied. In particular, we analyze
two well-known families of phase transitions—the Ising and the generalized voter universality classes—and
scrutinize the consequences of placing them under fluctuating global conditions. We observe that variability
of the control parameter induces in both classes “temporal Griffiths phases” (TGPs). These recently uncovered
phases are analogous to standard Griffiths phases appearing in systems with quenched spatial disorder, but where
the roles of space and time are exchanged. TGPs are characterized by broad regions in parameter space in which
(1) mean first-passage times scale algebraically with system size, and (ii) the system response (e.g., susceptibility)
diverges. Our results confirm that TGPs are quite robust and ubiquitous in the presence of temporal disorder.
Possible applications of our results to examples in ecology are discussed.
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I. INTRODUCTION

Systems with up-down Z, symmetry—including the Ising
model—are paradigmatic in statistical mechanics. Some of
them—such as the voter model—exhibit absorbing states, a
distinctive feature of nonequilibrium dynamics [1-4]. Ab-
sorbing states are configurations of the system characterized
by the lack of fluctuations, where the dynamics becomes
frozen and the system remains trapped. In previous years,
a great interest has been given to this class of models with
two symmetric absorbing states [1-10], which are of high
relevance in diverse problems in the ecological, biological,
and social sciences, such as species competition [11], neutral
theories of biodiversity [12], allele frequency in genetics
[13], opinion formation [14], epidemics propagation [15], or
language spreading [16].

Phase transitions into absorbing states are quite universal.
Systems exhibiting one absorbing state belong generically to
the very robust directed percolation (DP) universality class
and share the same set of critical exponents, amplitude ratios,
and scaling functions. When this general rule is broken it is
so owing to the presence of some additional symmetry or
conservation law [1-4]. This is the case of the class of systems
with Z,-symmetric absorbing states, which may exhibit a
phase transition with critical scaling differing from DP, usually
referred to as generalized voter (GV), also called “parity
conserving,” “DP2,” or “directed Ising,” universality class
(see [1,2,6] and references therein). Analytical and numerical
studies [5,6,8—10] have shown that, depending on some details,
Z,-symmetric models may undergo either a unique GV-like
phase transition separating an active or symmetric phase
from an absorbing one or, alternatively, such a transition
can split into two separate ones: an Ising-like transition in
which the Z, symmetry is broken, and a second DP-like
transition below which the broken-symmetry phase collapses
into the corresponding absorbing state. In particular, a general
stochastic theory, aimed at capturing the phenomenology of
these systems, was proposed in Ref. [5]; depending on general
features it may exhibit a DP, an Ising, or a GV transition.
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In many situations, Z,-symmetric systems are not isolated
but, instead, affected by external conditions or by environmen-
tal fluctuations. The question of how external variability affects
diversity, robustness, and evolution of complex systems, is of
outmost relevance in different contexts. Take, for instance, the
example of the neutral theory of biodiversity: If there are two
Z,-symmetric (or neutral) species competing, what happens if
depending on environmental conditions one of the two species
is favored at each time step in a symmetric way? Does such
environmental variability enhance species coexistence or does
it hinder it? [17-21].

Motivated by these questions, we study how basic proper-
ties of Z,-symmetric systems, such as response functions and
first-passage times, are affected by the presence of temporal
disorder.

Some previous works have explored the effects of fluc-
tuating global conditions in simple models exhibiting phase
transitions [22-24]. Temporal disorder has been shown to be
a highly relevant perturbation around DP phase transitions
in all dimensions (in apparent contradiction with the Harris
criterion for the relevance of disorder [22]), while temporal
disorder has been shown to be relevant at the Ising transition
only at and above three dimensions. More recently, a modified
version of the simplest representative of the DP class (i.e., the
contact-process) equipped with temporal disorder was studied
in Ref. [25]. In this model, the control parameter (birth proba-
bility) was taken to be a random variable, varying at each time
unit. As the control parameter is allowed to take values above
and below the transition point of the pure contact process,
the system alternates between the tendencies to be active or
absorbing. As shown in Ref. [25] this dynamical frustration
induces a logarithmic type of finite-size scaling at the tran-
sition point and generates a subregion in the active phase
characterized by a generic algebraic scaling (rather than the
usual exponential, Kramers-like, behavior) of the extinction
times with system size. More strikingly, this subregion is
also characterized by generic divergences in the system
susceptibility, a property which is reserved for critical points
in pure systems. This phenomenology is akin to the one in
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systems with quenched “spatial” disorder [26], which show
algebraic relaxation of the order parameter, and singularities
in thermodynamic potentials in broad regions of parameter
space: the so-called, Griffiths phases [27]. The remarkable
peculiarities of standard Griffiths phases stem from the
existence of (exponentially) rare—locally ordered—regions
which take a (exponentially) long time to decay, inducing an
anomalously slow decay in the disordered phase.

In the case of temporal disorder, an analogy with Griffiths
phases can be made, in the sense that very long (exponentially
rare) time intervals (corresponding to an absorbing phase of
the pure model) of the control parameter have a large influence
on the system dynamics even when the overall system is in its
active phase. These phenomenological similarities between
systems with spatial and temporal disorder led us to introduce
the concept of “temporal Griffiths phases” (TGPs) [25].

In order to investigate whether the anomalous behavior that
leads to TGPs around absorbing state (DP) phase transitions
is a universal property of systems in other universality
classes—-and, in particular, in up-down symmetric systems—
we study the possibility of having TGPs around Ising and GV
transitions. We scrutinize simple models in these two classes
and assume that the corresponding control parameter changes
randomly in time, fluctuating around the transition point of
the corresponding pure model, and study the susceptibility
as well as mean first-passage times. We mainly focus on
the mean-field (high-dimensional) limit, since it allows for
analytical treatment via a Langevin approach, but we also
provide numerical results and some theoretical considerations
for low-dimensional systems.

The paper is organized as follows. In Sec. II, we develop a
general mean-field description of models with varying control
parameters in terms of collective variables. In Secs. [l and IV,
we show analytical and numerical results for the Ising and
GV transitions, respectively. In Sec. V, a short summary and
conclusions are presented.

II. MEAN-FIELD THEORY OF Z,-SYMMETRIC MODELS
WITH TEMPORAL DISORDER

Interacting particle models evolve stochastically over time.
A useful technique to study such systems is the mean-field
(MF) approach, which implicitly assumes a “well-mixed”
situation, where each particle can interact with any other, pro-
viding a sound approximation in high-dimensional systems.
One way in which the mean-field limit can be seen at work
is by analyzing a fully connected network (FCN), where each
node (particle) is directly connected to any other, mimicking
an infinite dimensional system.

In the models we study here, states can be labeled with
occupation-number variables p; taking a value 1 if node i is
occupied or 0 if it is empty, or alternatively by spin variables
S; =2p; — 1, with S; = 1. Using these latter, the natural
order parameter is the magnetization per spin, defined as

1 N
m=N§Si, (1)

where N is the total number of particles in the system.
The master equation for the probability P(m,t) of having
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magnetization m at a given time 7 is

Pm,t +1/N)=wy(m —2/N,b) P(m —2/N,t)
+w_(m+2/N,b)P(m+2/N,t)
+[1 — w_(m,b) — wi(m,b)|P(m,t), (2)

where w4 (m,b) are the transition probabilities from a state
with magnetization m to a state with magnetizationm + 2/N.
This describes a process in which a “spin” is randomly selected
at every time step (of length dt = 1/N), and inverted with a
probability that depends on m and the control parameter b. The
allowed magnetization changes in an individual update, Am =
+2/N, are infinitesimally small in the N — oo limit. In this
limit, one can perform a standard Kramers-Moyal expansion
[28,29] leading to the Fokker-Planck equation,

M = i (m,b)P(m,t)
o gm S mDPD]
L o? b)P(m,t 3
with drift and diffusion terms given, respectively, by
fim,b) =2[wi(m,b) — w_(m,b)], 4)
(m.b) = 4 [wy(m,b) + w,(m,b)]. )

N

From Eq. (3), and working in the It6 scheme (as justified by
the fact that it comes from a discrete in time equation [30]), its
equivalent Langevin equation is [29]

m = f(m,b) ++/g(m,b)n(t), (6)

where the dot stands for time derivative, and n(¢) is a Gaussian
white noise of zero mean and correlations (n(¢)n(t')) = 8(t —
t"). The diffusion term is proportional to 1/ V'N, and, therefore,
it vanishes in the thermodynamic limit (N — 00), leading to
a deterministic equation for m.

The drift and diffusion coefficients in Eq. (6) depend not
only on the magnetization, but also on the parameter b. To
analyze the behavior of the system when b changes randomly
over time, and following previous works [20,25], we allow
b to take a new random value, extracted from a uniform
distribution, in the interval (by — o,by + o) at each MC step
(i.e., every time interval T = 1). Thus, we assume that the
dynamics of b(t) obeys an Ornstein-Uhlenbeck process,

b(t) = by + 0 £(1), N

where £(¢) is a steplike function that randomly fluctuates
between —1 and 1, as depicted in Fig. 1(a). Its average
correlation is

- 11 —|Atl/T) for |At| <,
EOEGC+AN) = { ®)
0 for |At] > T,
where the bar stands for time averaging. The parameters by
and o are chosen with the requirement that b takes values
at both sides of the transition point of the pure model [see
Fig. 1(b)], that is, the model with constant b. Thus, the system
randomly shifts between the tendencies to be in one phase
or the other (see Fig. 2). The model presents both intrinsic
and extrinsic fluctuations, as represented by the white noise
n(¢) and the colored noise £(¢), respectively. Plugging the
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FIG. 1. (Color online) (a) Typical realization of the colored noise
&(1), a steplike function that takes values between +1 and —1.
(b) Stochastic control parameter b(t) = by + o&(t) according to the
values of the noise in (a), by = 1.03 and 0 = 0.4.

expression Eq. (7) for b(¢) into Eq. (6), and retaining only
linear terms in the noise one readily obtains

= fo(m) 4+ vgolm) n(®) + jo(m)&(1), )

where fo(m) = f(m,by), go(m) = g(m,by), and jo(m) is a
function determined by the functional form of f(m,b) that
might also depend on by. To simplify the analysis, we assume
that relaxation times are much longer than the autocorrelation
time 7, and thus take the limit T — O in the correlation
function Eq. (8), and transform the external colored noise &
into a Gaussian white noise with effective amplitude K =
fj;o (E()E(t + A1)) dAt = T/3. Then, we combine the two
white noises into an effective Gaussian white noise, whose
square amplitude is the sum of the squared amplitudes of both
noises [29], and finally arrive at

m = fo(m) +/go(m) + K jg(m) y (1), (10)
where (y(¢)) = 0 and (y(@®)y(t)) = &(t — t').
Dnin Dimaa
f N
.

Order parameter m

Control parameter b

FIG. 2. (Color online) Schematic representation of the fluctuating
control parameter in the Ising model with Glauber dynamics. It makes
the system shift between the ordered phase to the disordered one.
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In the next two sections, we analyze the dynamics of the
kinetic Ising model with Glauber dynamics and a variation
of the voter model (the so-called g-voter model)-which are
representative of the Ising and GV transitions, respectively, in
the presence of external noise. For that we follow the strategy
developed in this section to derive mean-field Langevin
equations and present also results of numerical simulations
(for both finite and infinite dimensional systems), as well as
analytical calculations.

III. ISING TRANSITION WITH TEMPORAL DISORDER

We consider the kinetic Ising model with Glauber dynamics
[31], as defined by the following transition rates:

1 b
Qi (S; —S$)==|1-S;tanh | — S
S; — ) 5 an ZdZ |

JEli)

Y

The sum extends over the 2d nearest neighbors of a given spin
i on a d-dimensional hypercubic lattice, and b = J8 is the
control parameter. J is the coupling constant between spins,
which we set to 1 from now on, and 8 = (kzT)~!. Note that b
in this case is proportional to the inverse temperature.

A. The Langevin equation

In the mean-field case, the cubic lattice is replaced by a
fully connected network in which the number of neighbors 2d
of a given site is simply N — 1. Then, the transition rates of
Eq. (11) can be expressed as

Qi(m,b)=QF - )= % [l £tanh(bm)]. (12)

which implies w4 (m,b) = 1%Qi(m,b) for jumps in the
magnetization. Following the steps in the previous section,
and expanding 2. to third order in m, we obtain

1 — bom?
m = apm — com® + \/Tom + Ko2m2(1-bim?)?y (1),
(13)

where by is the mean value of the stochastic control parameter,
ap = by — 1, and o = b}/3.

The potential V(m) = —%m?* + ©m* associated with the
deterministic term of Eq. (13) has the standard shape of
the Ising class, that is, of systems exhibiting a spontaneous
breaking of the Z, symmetry. A single minimum at m = 0
exists in the disordered phase, while two symmetric ones, at
+./a/c, exist below the critical point.

B. Numerical results

In this section we study two magnitudes that were shown
to be relevant in systems with temporal disorder [25]: the
mean crossing time (or mean first-passage time) and the
susceptibility. The crossing time is the time employed by
the system to reach the disordered zero-magnetization state
for the first time, starting from a fully ordered state with
|m| =1 (see Fig. 3). Crossing times were calculated by
numerically integrating Eq. (13) for different realizations of
the noise y and averaging over many independent realizations.
These integrations were performed using a standard stochastic
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FIG. 3. (Color online) Single realization of the stochastic process.
The system starts with all the spins in the same state (m = 1) and
the dynamics is stopped when it crosses m = 0, which defines the
crossing time in the Ising model. We take o = 0.4, by = 0.98, and
system size N = 10°. On the right margin we sketch the mapping of
the problem to a random walk with jump length |[Am| = 2/N.

Runge-Kutta scheme (note that the noise term does not have
any pathological behavior at m = 0 as occurs in systems with
absorbing states, for which more refined integration techniques
are required [32]). Results are shown in Fig. 4.

To estimate the critical point, we calculated the time
evolution of the average magnetization (m)(¢) by integrating
the Langevin equation [Eq. (13)], and also by performing
Monte Carlo simulations of the particle system on a fully
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FIG. 4. (Color online) (Main) Log-log plot of the crossing time
T(N) for the Ising model with Glauber dynamics in mean field.
Values of the control parameter from by = 0.98 (bottom) to by =
1.10 (top) are shown. Monte Carlo simulations on an FCN (circles)
and numerical integration of the Langevin equation [Eq. (13)] with
o = 0.4 (squares and interpolation with solid lines). There is a region
with generic algebraic scaling of T (N) and continuously varying
exponents, by € [1.01,1.10]. (Inset) Log-log plot of T(N) vs InN.
At criticality (dotted-dashed line) the scaling is fitted to a quadratic
function in In V.
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connected network. At the critical point by . the magnetization
decays to zero as (m) ~t~#. We have estimated by . = 1,
which coincides with the pure case critical point b, pure = 1:
The critical point in the presence of disorder in mean field is not
shifted with respect to the pure system, in agreement with the
analytical calculation in Appendix A. At this critical point, as
it is characteristic of TGPs [25], a scaling of the form T ~
[In N]* is expected. The numerically determined exponent
value o ~ 2.81 for 0 = 0.4 is higher than the exponent o« = 2
of the asymptotic analytical prediction Eq. (A34), probably
because the asymptotic regime in In N has not been reached.
Instead, the behavior for arbitrary values of N appears to be a
second-order polynomial in In N, as we can see in Eq. (A31).
Indeed, the numerical data are well fitted by the quadratic
function a (In N)> + b In N + ¢ (see inset of Fig. 4). This is
to be compared with the standard power-law scaling T ~ N#
characteristic of pure systems (i.e., for o = 0). Moreover, a
broad region showing algebraic scaling T ~ N°? with a contin-
uously varying exponent §(by) (6 — 0 as by — b('; .) appears
in the ordered phase by > by .. Both  and § are not universal
and depend on the noise strength o . Finally, in the disordered
phase the scaling of T is observed to be logarithmic, 7~ In N.

We have also performed Monte Carlo simulations of the
time-disordered Glauber model on two- and three-dimensional
cubic lattices with nearest neighbor interactions. The critical
point was computed following standard methods, that is,
by looking for a power-law scaling of (m) versus time, as
we mentioned above. In d = 2, a shift in the critical point
was found: from b, pue = 0.441(1) in the pure model to
by = 0.605(1) for o = 0.4. However, the scaling behavior
of T with N resembles that of the pure model, with T ~ N B
at criticality (with an exponent numerically close to that of
the pure model [4]), and an exponential growth T ~ exp(cN),
where c is a positive constant, in the ordered phase (Arrhenius
law) (see Fig. 5). Thus, no region of generic algebraic scaling
appears in this low-dimensional system. On the contrary, in
d =3, results qualitatively similar to mean-field ones are
recovered (see Fig. 6). The critical point is shifted from
be pure = 0.222(1) (calculated in Ref. [33]) to by . = 0.413(2),
with a critical exponent «(d = 3) = 5.29 for 0 = 0.4, and
generic algebraic scaling in the ordered phase. In conclusion,
our numerical studies suggest that the lower critical dimension
for the TGPs in the Ising transition is d. = 3. This is in
agreement with the analytical finding in Ref. [23], establishing
that temporal disorder is irrelevant in Ising-like systems below
three dimensions. This result is to be compared with d, = 2
numerically reported for the existence of TGPs in DP-like
transitions [25] (observe, however, that temporal disorder, in
this case, affects the value of critical exponents at criticality
in all spatial dimensions). Further studies are needed to clarify
the relation between disorder relevance at criticality and the
existence or not of TGPs.

We have also measured the susceptibility x, defined as the
response function to an external field % in the vanishing field
limit,

d(m)

x = lim

h—0 0h 14

where (m) denotes the stationary magnetization averaged
over many independent realizations. In the presence of
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FIG. 5. (Color online) Log-log plot of the crossing time 7'(N) for
the Ising model with Glauber dynamicsind = 2. Values of the control
parameter from by = 0.590 (bottom) to by = 0.610 (top) are shown.
Monte Carlo simulations on a regular cubic lattice with o = 0.4
(lines are interpolations). We observe a power-law scaling at the
critical point (dotted-dashed line). TGP are not observed, crossing
time scales exponentially in the ordered phase (light green upper
line).

an external field, the transition rates become Qi(m,b) =
% [1 &+ tanh (b m + h)]. Expanding the hyperbolic tangent up
to third order in m and to first order in &, we obtain the
following Langevin equation:

m = agm — com3 + h(1 — bzmz) + \/fam(l—b%mz) y(1),

(15)

where we have considered the N — oo limit (gg = 0).

1 I web, =046
0" g o ob,=045
ETE ° b,=0.44
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FIG. 6. (Color online) Log-log plot of the crossing time 7(N)
for the Ising model with Glauber dynamics in d = 3. Monte Carlo
simulations on a regular cubic lattice with o = 0.4 (lines are interpo-
lations). Values of the control parameter from by = 0.40 (bottom)
to by = 0.46 (top) are shown. There is a region b € [0.42,0.46]
with generic algebraic scaling of 7(N) and continuously varying
exponents. (Inset) Log-log plot of T(N) vs In(N). It is estimated at
criticality (dotted-dashed line) T ~ (In N)*>%.
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FIG. 7. (Color online) (Main) Log-log plot of the susceptibility
as a function of the external field for different values of by €
[bo. — 02/2,by. + 0%/2] with VKo = 0.1, obtained by integrating
Eq. (15). Generic divergences with symmetric exponents around the
critical value by, = 1 (dotted-dashed line) are observed.

The average magnetization (m) for a given field 7 was
calculated by integrating the Langevin equation and then
taking averages over noise realizations. The susceptibility can
be computed, for different values of by, as the derivative
of (m) with respect to h. Generic divergences of the form
x ~ h"¥ + Constant (with v < 0 as & — 0) appear in a broad
region by € [by. — 02/2,bg. + 0%/2], centered around by,
with symmetric exponents around the critical point (see Fig. 7).
These results agree with those obtained through Monte Carlo
simulations on an FCN (not shown). In finite dimensions, given
the required large system sizes and small fields, we could not
conclude about the existence or not of generic divergences.

C. Analytical results

Let us consider the Langevin equation [Eq. (13)] in the
thermodynamic limit (go(m) = 0). Given that the remaining
intrinsic noise comes from a transformation of a colored noise
into a white noise, the Stratonovich interpretation is to be
used to obtain its associated Fokker-Planck equation (see, e.g.,
[30D):

om0 O sy + £ jotmy jgmy | Pom.1)

_— = —— m — jo(m) jo(m m,

ot om ||7° 2 JoVo

2

L0tk 2omp
+§W{ Jjo(m)P(m,1)}.

Imposing the detailed balance (fluxless) condition, it is
straightforward to obtain the steady-state solution,

(16)

P Com | 17

Sl(m) Xexp| — KUZ |m| ko ) ( )
with a power-law singularity at the origin; This is a distinctive
trait of a Langevin equation with linear multiplicative noise
[34,35]. By performing a calculation analogous to that in
Ref. [25], we have analytically computed the system sus-
ceptibility and found that x ~ AV 4 Constant, as mentioned
earlier, and in agreement with previous results found in
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Refs. [25,34,35], with
2(bo — 1)
v= 29 7 _
Ko?

This, in particular, implies that the susceptibility diverges when
v <0ash— 0 or in terms of the control parameter by =
1 4 ap, when by takes a value in the region 1 — 02/2 < by <
1 + 02/2 centered at the critical point by . = 1. The values of
the exponent v agree well with those of Fig. 7 at some distance
from the critical point. For instance, an analytical value
v=—0.40 for by =1.003 corresponds to a numerical
value vyym = —0.39, and v = —0.60 for by = —1.002 to a
value vpym = —0.59. However, the analytical exponent v =
—1 at the critical point is not in good agreement with the
numerical result vy, = —0.88, indicating that the asymptotic
regime has not been numerically reached.

We next provide analytical results for the crossing time.
Starting from the N-independent Fokker-Planck equation
[Eq. (16)], an effective dependence on N is implemented
by calculating the first-passage time to the state m = |2/N|
rather than m = 0. This is equivalent to the assumption that
the system reaches the zero magnetization state with an
equal number Ny = N_ = N/2 of up and down spins when
|m| < 2/N, that is, when N/2 -1 < Ny < N/2+ 1. The
mean first-passage time T associated with the Fokker-Planck
equation [Eq. (16)] obeys the differential equation [29],

1. (18)

K ) " K . ./ /
Ejo(m)T (m) + | folm) + 3Jo(m)10(m) T'(m)=—1,
19)

with absorbing and reflecting boundaries at |m| =2/N and
|m| = 1, respectively. The solution, starting at time ¢t = 0 from
m = 1 is given by

1 d 1
Tm=n=2[ [ EIa
v YW Jy Kjy(2)
where
X 2 I K o AN ’
Y(x) = exp { / fola) + .QJO(X JJox )dx’}. 1)
2/N Kjyx")
Computing these integrals (see Appendix A) we obtain
InN/(bg — 1) for by <1,
T ~ 13(UnN)?*/o? for by=1, (22)
6(bg—1
N for by > 1.

These expressions qualitatively agree with the numerical
results of Fig. 4, showing that 7 grows logarithmically with
N in the absorbing phase by < 1, as a power law in the
active phase by > 1, and as a power of InN (i.e., poly-
logarithmically) at the transition point by . = 1. The exponents
8§ =6(by — 1)/0? do not agree well with the numerically
determined exponents. This is probably due to the fact that
we have neglected the 1/+/N term by taking gy = 0, which
becomes of the same magnitude as the j, term when |m]|
approaches 2/N. Indeed, this was confirmed (not shown)
by testing that analytical expressions [Eq. (22)] agree very
well with the numerical integrations of Eq. (13) performed for
go = 0, and setting the crossing point at m = 2/N. In sum-
mary, this analytical approach reproduces qualitatively—and
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in some cases quantitatively—the above reported nontrivial
phenomenology.

IV. GENERALIZED VOTER TRANSITION
WITH TEMPORAL DISORDER

We study in this section the GV transition [6], which
appears when a Z,-symmetry system simultaneously breaks
the symmetry and reaches one of the two absorbing states. A
model presenting this type of transition is the nonlinear g-voter
model, introduced in Ref. [36]. The microscopic dynamics of
this nonlinear version of the voter model consists in randomly
picking a spin S; and flipping it with a probability that depends
on the state of g randomly chosen neighbors of S; (with
possible repetitions). If all neighbors are at the same state, then
S; adopts it with probability 1 (which implies, in particular,
that the two completely ordered configurations are absorbing).
Otherwise, S; flips with a state-dependent probability,

fx,b) =x74+b[1 —x7 — (1 —x)], (23)

where x is the fraction of disagreeing (antiparallel) neighbors
and b is a control parameter. Three types of transitions, Ising,
DP, and GV can be observed in this model depending on the
value of g [36]. Here, we focus on the g = 3 case, for which
a unique GV transition at b, = 1/3 has been reported [36].

A. The Langevin equation

In the MF limit (FCN) [37], the fractions of antiparallel
neighbors of the two types of spins S; = 1 and S; = —1 are
x=(1—-—m)/2 and x = (1 +m)/2, respectively. Thus, the
transition probabilities are

ws(m.b) = me 7 (#,b) . 24)

Following the same steps as in the previous section, we obtain
the Langevin equation,

) 1 —3by
m —=
2

1 —m?)(1+6b 2y 9K
+\/( m)(]-\ll— 0+m)+702m2(1—m2)2

x y(t). 25)

Let us remark that the potential in the nonlinear voter model
(Fig. 8) differs from that for the Ising model. Owing to the
fact that the coefficients of the linear and cubic term in the
deterministic part of Eq. (25) coincide (except for their sign),
the system exhibits a discontinuous jump at the transition
point, where the potential minimum changes directly from
m = 0 in the disordered phase to m = =£1 in the ordered one.
Furthermore, the potential vanishes at the critical point [5].

m(l —m?)

B. Numerical results

The ordering time, defined as the averaged time required
to reach a completely ordered configuration (absorbing state)
starting from a disordered configuration, is the equivalent of
the crossing time above. We have measured the mean ordering
time 7' by both, integrating the Langevin equation [Eq. (25)]
and running Monte Carlo simulations of the microscopic
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FIG. 8. (Color online) Potential for the GV transition in a mean-
field approach. The dashed, solid, and dot-dashed lines correspond to
the paramagnetic phase, critical point, and the ferromagnetic phase,
respectively.

dynamics on FCNs and finite dimensions. In Fig. 9 we show the
MF results. We observe that T has a similar behavior to the one
found for the mean crossing time in the Ising model, and for the
mean extinction time for the contact process [25] [i.e., a critical
scaling T ~ [In N]* at the transition point by . = 1/3, with a
critical exponent « = 3.68 for o = 0.3, a logarithmic scaling
T ~ In N in the absorbing phase by < by, and a power-law
scaling T ~ N°® with continuously varying exponent 8(bp) in
the active phase by > by .].

Monte Carlo simulations on regular lattices of dimensions
d =2 and d = 3 revealed that there is no significant change
in the scaling behavior with respect to the pure model (not
shown). The critical point shifts in d = 2 and remains very
close to its mean-field value in d = 3, but results are compat-
ible with the usual critical (pure) voter scaling T, ~ N In N

oo T [T T 3
W0 wo'F wu‘,a:; 7
T | T¢ P2 =t

b, = 03700 " :
\06 Heab,=0.365 In(N) 10 ]

aab,=0.360

Usab,=0.355 ]

Ho-ab, = 0.350 ]
1ot fleab,=0.345 ]

b,= 0.340
romb, =13
Hoab,=03304 1
2 -
107 e MC o L i L N
10’ 10 10" w0 N0

FIG. 9. (Color online) (Main) Log-log plot of the ordering time
as a function of the system size N in the MF g-voter model.
Monte Carlo simulations on an FCN (dots) and numerical integration
of the Langevin equation [Eq. (25)] for values of b going from
0.330 (bottom) to 0.370 (top), and o = 0.3 (squares and solid lines
interpolation). In the active phase a finite region with power-law
scaling is observed, by € [0.340,0.370]. (Inset) Log-log plot of T" as
afunction of In N. At the critical point (dashed line) is T ~ [In N3,
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and T5; ~ N. In the absorbing phase T' grows logarithmically
with N, while in the active phase 7 grows exponentially
fast with N, as in the pure-model case. Therefore, in these
finite dimensional systems we do not find any TGP or other
anomalous effects induced by temporal disorder, although we
cannot numerically exclude their existence in d = 3. Such
effects should be observable, only in higher dimensional
systems (closer to the mean-field limit).

C. Analytical results

The ordering time T can be estimated by assuming that the
dynamics is described by the Langevin equation [Eq. (25)],
and calculating the mean first-passage time from m = 0 to any
of the two barriers located at |m| = 1. It turns out useful to
consider the density of up spins rather than the magnetization:

14+m

p=— (26)
T is the mean first-passage time to p = 0 starting from
o = 1/2. The Langevin equation for p is obtained from
Eq. (25), by neglecting the 1/+/N term and applying the
ordinary transformation of variables [which is done employing
standard algebra, given that Eq. (25) is interpreted in the
Stratonovich sense] is

p = A(p) + VK C(p)y(®), 27)
with

A(p) = app2p — 1)(1 — p),

C(p) =30p2p — 1)1 = p),

where ag = 1 — 3by.

Now, we can follow the same steps as in Sec. III C for the
Ising model, and find the equation for the mean first-passage
time 7T(p) by means of the Fokker-Planck equation. The
solution is given by (see Appendix B)

(28)

InN/(Bby — 1) for by <1/3,
T ~ 1 (nN)? /302 for bg=1/3, (29)
2(bg—1/3
e for by > 1/3.

These scalings, which qualitatively agree with the numerical
results of Fig. 9 for the ¢ voter, show that the behavior of
T is analogous to the one observed in the Ising transition of
Sec. III and in the DP transition found in Ref. [25]. Therefore,
we conclude that TGPs appear around GV transitions in the
presence of external varying parameters in high-dimensional
systems.

For the GV universality class the renormalization group
fixed point is a nonperturbative one [38], becoming relevant
in a dimension between one and two. A field theoretical
implementation of temporal disorder in this theory is still
missing, hence, theoretical predictions and sound criteria for
disorder relevance are not available.

V. SUMMARY AND CONCLUSIONS

We have investigated the effect of temporal disorder on
phase transitions exhibited by Z,-symmetric systems: the
(continuous) Ising and (discontinuous) GV transitions which
appear in many different scenarios. We have explored whether
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temporal disorder induces temporal Griffiths phases as was
previously found in standard (DP) systems with one absorbing
state. By performing mean-field analyses as well as extensive
computer simulations (in both fully connected networks and
in finite dimensional lattices) we found that TGPs can exist
around equilibrium (Ising) transitions (above d =2) and
around discontinuous (GV) nonequilibrium transitions (only in
high-dimensional systems). Therefore, we confirm that TGPs
may also appear in systems with two symmetric absorbing
states, illustrating the generality of the underlying mechanism:
the appearance of a region, induced by temporal stochasticity
of the control parameter, where first-passage times scale as
power laws of the system size and where the susceptibility
diverges. Temporal disorder makes the ordered or active
phase less stable and makes the system highly susceptible
to perturbations. This appears to be a rather general and robust
phenomenon.

It also seems to be a general property that TGPs do not ap-
pear in low-dimensional systems, where standard fluctuations
dominate over temporal disorder. In all the cases studied so
far, a critical dimension d.—at and below which TGPs do not
appear—exist (d, = 1 for DP transitions, d. = 2 for Ising like
systems, and d. >~ 3 for GV ones). Calculating analytically
such a critical dimension and comparing it with the standard
critical dimension for the relevance or irrelevance of temporal
disorder at the critical point (i.e., at the renormalization
group nontrivial fixed point of the corresponding field theory)
remains an open and challenging task.

A relevant application of our results is found in models
of ecosystems. In this case, first-passage times are related to
typical extinction times, and studying how such extinction
times are affected by system size (e.g., habitat fragmentation)
is a problem of utmost relevance. Future research might be
oriented to the effect of temporal disorder on the formation
and dynamics of spatial structures.
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APPENDIX A: ANALYTICAL CALCULATIONS OF THE
CROSSING TIME FOR THE MEAN-FIELD ISING MODEL

The mean first-passage time to reach an absorbing barrier

at [m| = 2/N starting from |m| = 1 can be expressed as [29]
m=1 d 1

2/N 1//()’) y K]o (Z)

dz, (A1)

with

©2f0(@) + Ko@) jy@)
= d
V(@) =exp /Z/N ¢ Kji(z)

. (A2)
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which involves sixth- and fourth-order polynomial functions.
In order to make the integral simpler, functions are expanded
up to third order,

K . ./ 2 ) 2
folm) + gjo(m)Jo(m) ~m(r —sm”), Kjy(m)~ om”,

(A3)

with w = 02/3, r=ag+w/2, s=(+ 2a)bg). A second
simplifying assumption is to take 1 as the lower integration
limitin Eq. (A2) instead of 2/ N [justified because v (z) appears
both in the numerator and the denominator of 7 () and the
contribution of this limiting value is negligible]. Therefore,
Eq. (A2) becomes

29, (p — 12
Y(z) = exp/ Z(r—,zsz)dzf _ Zaeﬂ(l—zz)’ (A4)
1 wz
where o =2r/w and B =s/w. The first-passage time is
written as
1
1
r=2 f ﬂdy, (AS)
N Y ()

where it has been defined,
1 gl
y Kjy(@) w Jy

which presents a singularity wheno = 1 (by = 1 = by ). This
case will be studied separately.

I(y) =

1. Casea #1
Integrating by parts Eq. (A6),

eﬁ e_ﬁ _ e_ﬁyz a—1 1 Zae_ﬂzz
1) = —[—y +2f3/ dz}. (A7)
w o y -1

—1 o

This integral can be solved again integrating by parts, and so
on, recursively,

l & | — e—BOP=D o142k
10) = = Y ) ————— (A8)
@ =0 [Ticoor — 1+2i
Therefore,
2 ¢ 2B)
I=~ #[II(N)—Iz(k,N)], (A9)
@ =5 [licgo = 1+2i
where
1
Ii(N) = / y*aeﬂ()'zfl)dy’ (A10)
1/N
1
L(k,N) = / y*lay. (A11)
1/N

I1(N) is solved by parts. A recursive integration similar to the
one in Eq. (A6) has to be performed:

00 (-2 )1[1 _Na—l—2lef3(l/N2—l)]
LNy =Y P l _ . (A12)
1=0 [Tjmgor —1+2j
On the other hand, I;(k,N) is easily solved:
—In(N"H=InN for k=0,
L(k,N) = { l_é\;{—% for k> 1 (A13)
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The final expression for the first-passage time is

T:E(II(N)_IHN>
w a—1

2 o @AM LN — (1 = N7 /2k]

+ % _ 3
@ [liga —1+2i

(Al4)

whose asymptotic limit N — oo has two different cases.

a a<1

In this case, @ — 1 — 2] < O when/ > 0 so in I1(N),

1 — No— 12PN =D g (A15)
which leads to
o0
(—2B)
L(N) = Z ——— =C@p). (Al6)
= l_[j:ol +2j—«a
We have
_ o k _ —1
a2 [C(a,m Iy 55 CAF(C@) = 2 )} |
w a—1 o [ljmoa—1+2j
(A17)
and finally,
T 2 N (A18)
X — In V.
wla—1)
b a>1

Considering that N*~! > N*~1=2 v] > 0, only the first
term is relevant in Eq. (A12) for I;(N). Then

| — e AN e PN
L(N)~ A ,

A19
l—« l—« ( )

and in the asymptotic behavior (N >> 1) of the mean escape
time,

2In N

T~ K(a,p)N* ' — —— ~ N*!, (A20)
ol —1)
2. Case a = 1. Critical point
We need to solve
1 Bl
Y (2) e / 1 g2

I1(y) = dz = — e P dz. A21
=] =35 (A21)

Expanding the exponential function and integrating, it is

k1_2 2k
I(y) = [ Iny +Z%} (A22)

Taking Eq. (A22) into Eq. (AY),

p — (=B)
— | BN+ Y U N) + I N | (A23)
k=1 :
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1
L(N) = - f
1/N

1
L(N) = / ylePO Dy,
1/N

where

y_l In yeﬁ(’z_l)dy,

(A24)

1
Is(k,N) = / 1Py,
/N

First of all, let us consider the solution of /3(N) integrating by
parts, so that

InN)? .- ! 2
L(N) = %JW D4B / (In y)?e" Dy, (A25)
1/N

and we obtain

L(N) = w BNT=D L 28 _ O(N~ 1)+0<II;VN>,

(A26)

which scales in the asymptotic limit as

2
V) ~ N

(A27)

On the other hand, the leading behavior when the size of the
system is big enough (N > 1) is
I(N) ~ e P InN + C4(B). (A28)

To solve the last integral, I5(k,N), the exponential function
has to be expanded as well. It is

o0
Is(k,N) = ¢ P Z T 21)(1 — N727%y ~ constant,
1=0

(A29)

when N > 1. It finally leads to an expression for 7 at
criticality,

L2 {eﬂ(ln Ny N i (—B)

w

[e P InN + C,(B)] }

(A30)

In the limit of very large system sizes (N > 1) the mean escape
time scales as

(lnN)2 =B
T ~ — ——IN+K A3l
Z LN KB, (A3D)
which asymptotically becomes
1 2
7~ &8N (A32)
1)

Summing up, the time taken by the system for reaching m =
2/N from an initial condition m = 1 is

(a 5 InN for o<1,
T ~ { ol for a=1, (A33)
Nl for o > 1.
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or in terms of the original parameters,

% for by < by,
2
T ~ 280 for by = by, (A34)
6(by—1)
N o2 for by > by,

APPENDIX B: ANALYTICAL CALCULATIONS OF THE
CROSSING TIME FOR THE MEAN-FIELD NONLINEAR
q-YOTER MODEL

After performing the change of variables of Eq. (26), the
absorbing barrier is placed at p = 1/N and the reflecting one
at p = 1/2, (which is the initial point). The mean first-passage
time is given by

12
W.EZ) J
K jy(2)

=12 gy
T(p=1/2) = 2/ z, (B

yn v Jy

PHYSICAL REVIEW E 85, 051125 (2012)

with
¢ dz,2A(Z’) + KC()C'(2)
N KC*(2) '

Y (z) = exp / (B2)

1/
We expand the polynomials in Eq. (B2) up to second order,
using Eq. (28); it is
K ’ 2 2
A(p) + TC(p)C (p) = p(r —sp), KC(p)~ wp”,
(B3)

where we have defined w = 302, r = Y —143by, and s =
3r. These polynomials are similar to the ones obtained for
the Ising model, but with redefined parameters. The integrals
are done in a very similar way, and one finally reaches the
following expressions for the crossing (or ordering) time:

(311;:)11'1) for by < 1/3,
T~ @M for by =1/3, (B4)
by > 1/3.

302
2by—1/3)
o2 for
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