227 research outputs found

    The Pattern Speed of the Galactic Bar

    Get PDF
    Most late-type stars in the solar neighborhood have velocities similar to the local standard of rest (LSR), but there is a clearly separated secondary component corresponding to a slower rotation and a mean outward motion. Detailed simulations of the response of a stellar disk to a central bar show that such a bi-modality is expected from outer-Lindblad resonant scattering. When constraining the run of the rotation curve by the proper motion of Sgr A* and the terminal gas velocities, the value observed for the rotation velocity separating the two components results in a value of (53+/-3)km/s/kpc for the pattern speed of the bar, only weakly dependent on the precise values for Ro and bar angle phi.Comment: 5 pages LaTeX, 2 Figs, accepted for publication in ApJ Letter

    PLoS Genet.

    No full text
    The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI-carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown

    High resolution simulations of unstable modes in a collisionless disc

    Full text link
    We present N-body simulations of unstable spiral modes in a dynamically cool collisionless disc. We show that spiral modes grow in a thin collisionless disk in accordance with the analytical perturbation theory. We use the particle-mesh code SUPERBOX with nested grids to follow the evolution of unstable spirals that emerge from an unstable equilibrium state. We use a large number of particles (up to 40 million particles) and high-resolution spatial grids in our simulations (128^3 cells). These allow us to trace the dynamics of the unstable spiral modes until their wave amplitudes are saturated due to nonlinear effects. In general, the results of our simulations are in agreement with the analytical predictions. The growth rate and the pattern speed of the most unstable bar-mode measured in N-body simulations agree with the linear analysis. However the parameters of secondary unstable modes are in lesser agreement because of the still limited resolution of our simulations.Comment: 11 pages, 8 figures in 22 files, A&A in print: Oct. 1st 200

    Global Spiral Modes in NGC 1566: Observations and Theory

    Get PDF
    We present an observational and theoretical study of the spiral structure in galaxy NGC 1566. A digitized image of NGC 1566 in I-band was used for measurements of the radial dependence of amplitude variations in the spiral arms. We use the known velocity dispersion in the disk of NGC 1566, together with its rotation curve, to construct linear and 2D nonlinear simulations which are then compared with observations. A two-armed spiral is the most unstable linear global mode in the disk of NGC 1566. The nonlinear simulations are in agreement with the results of the linear modal analysis, and the theoretical surface amplitude and the velocity residual variations across the spiral arms are in qualitative agreement with the observations. The spiral arms found in the linear and nonlinear simulations are considerably shorter than those observed in the disk of NGC 1566. We argue therefore, that the surface density distribution in the disk of the galaxy NGC 1566 was different in the past, when spiral structure in NGC 1566 was linearly growing.Comment: 41 pages, 20 figures, to be published in the Astrophysical Journa

    Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

    Get PDF
    We present a systematic analysis of the description of odd nuclei by the Skyrme-Hartree-Fock approach augmented with pairing in BCS approximation and blocking of the odd nucleon. Current and spin densities in the Skyrme functional produce time-odd mean fields (TOMF) for odd nuclei. Their effect on basic properties (binding energies, odd-even staggering, separation energies and spectra) is investigated for the three Skyrme parameterizations SkI3, SLy6, and SV-bas. About 1300 spherical and axially-deformed odd nuclei with 16 < Z < 92 are considered. The calculations demonstrate that the TOMF effect is generally small, although not fully negligible. The influence of the Skyrme parameterization and the consistency of the calculations are much more important. With a proper choice of the parameterization, a good description of binding energies and their differences is obtained, comparable to that for even nuclei. The description of low-energy excitation spectra of odd nuclei is of varying quality depending on the nucleus

    Nonlinear Effects in Models of the Galaxy: 1. Midplane Stellar Orbits in the Presence of 3D Spiral Arms

    Get PDF
    With the aim of studying the nonlinear stellar and gaseous response to the gravitational potential of a galaxy such as the Milky Way, we have modeled 3D galactic spiral arms as a superposition of inhomogeneous oblate spheroids and added their contribution to an axisymmetric model of the Galactic mass distribution. Three spiral loci are proposed here, based in different sets of observations. A comparison of our model with a tight-winding approximation shows that the self-gravitation of the whole spiral pattern is important in the middle and outer galactic regions. As a first step to full 3D calculations the model is suitable for, we have explored the stellar orbital structure in the midplane of the Galaxy. We present the standard analysis in the pattern rotating frame, and complement this analysis with orbital information from the Galactic inertial frame. Prograde and retrograde orbits are defined unambiguously in the inertial frame, then labeled as such in the Poincar\'e diagrams of the non-inertial frame. In this manner we found a sharp separatrix between the two classes of orbits. Chaos is restricted to the prograde orbits, and its onset occurs for the higher spiral perturbation considered plausible in our Galaxy.Comment: 23 pages, 22 Figures. Latex. Submitted to Ap

    The Leo I Cloud: Secular nuclear evolution of NGC 3379, NGC 3384, and NGC 3368?

    Full text link
    The central regions of the three brightest members of the Leo I galaxy group -- NGC 3368, NGC 3379, and NGC 3384 -- are investigated by means of 2D spectroscopy. In all three galaxies we have found separate circumnuclear stellar and gaseous subsystems -- more probably, disks -- whose spatial orientations and spins are connected to the spatial orientation of the supergiant intergalactic HI ring reported previously by Schneider et al. (1983) and Schneider (1985, 1989). In NGC 3368 the global gaseous disk seems also to be inclined to the symmetry plane of the stellar body, being probably of external origin. Although the rather young mean stellar age and spatial orientations of the circumnuclear disks in NGC 3379, NGC 3384, and NGC 3368 could imply their recent formation from material of the intergalactic HI cloud, the time scale of these secondary formation events, of order 3 Gyr, does not support the collision scenario of Rood & Williams (1985), but is rather in line with the ideas of Schneider (1985, 1989) regarding tidal interactions of the galaxies with the HI cloud on timescales of the intergroup orbital motions.Comment: Accepted to ApJ, 46 pages (figs 18 and 22 are low resolution

    86 GHz SiO maser survey of late-type stars in the Inner Galaxy. I. Observational data

    Get PDF
    We present 86 GHz (v = 1, J = 2 -1) SiO maser line observations with the IRAM 30-m telescope of a sample of 441 late-type stars in the Inner Galaxy (-4 degr < l < +30 degr). These stars were selected on basis of their infrared magnitudes and colours from the ISOGAL and MSX catalogues. SiO maser emission was detected in 271 sources, and their line-of-sight velocities indicate that the stars are located in the Inner Galaxy. These new detections double the number of line-of-sight velocities available from previous SiO and OH maser observations in the area covered by our survey and are, together with other samples of e.g. OH/IR stars, useful for kinematic studies of the central parts of the Galaxy.Comment: 15 pages, 12 figures, accepted by A&A Journa
    corecore