7 research outputs found

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality

    Location variance of the great vessels while undergoing side-bend positioning changes during lateral interbody fusion

    No full text
    Background: Minimally invasive lateral lumbar interbody fusion (LLIF) is an increasingly popular surgical technique that facilitates minimally invasive exposure, attenuated blood loss, and potentially improved arthrodesis rates. However, there is a paucity of evidence elucidating the risk of vascular injury associated with LLIF, and no previous studies have evaluated the distance from the lumbar intervertebral space (IVS) to the abdominal vascular structures in a side-bend lateral decubitus position. Therefore, the purpose of this study is to evaluate the average distance, and changes in distance, from the lumbar IVS to the major vessels from supine to side-bend right and left lateral decubitus (RLD and LLD) positions simulating operating room positioning utilizing magnetic resonance imaging (MRI). Methods: We independently evaluated lumbar MRI scans of 10 adult patients in the supine, RLD, and LLD positions, calculating the distance from each lumbar IVS to adjacent major vascular structures. Results: At the cephalad lumbar levels (L1-L3), the aorta lies in closer proximity to the IVS in the RLD position, in contrast to the inferior vena cava (IVC), which is further from the IVS in the RLD. At the L3-S1 vertebral levels, the right and left common iliac arteries (CIA) are both further from the IVS in the LLD position, with the notable exception of the right CIA, which lies further from the IVS in the RLD at the L5-S1 level. At both the L4-5 and L5-S1 levels, the right common iliac vein (CIV) is further from the IVS in the RLD. In contrast, the left CIV is further from the IVS at the L4-5 and L5-S1 levels. Conclusion: Our results suggest that RLD positioning may be safer for LLIF as it affords greater distance away from critical venous structures, however, surgical positioning should be assessed at the discretion of the spine surgeon on a patient-specific basis
    corecore