373 research outputs found

    A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinolophus rouxi and Pteronotus parnellit)

    Get PDF
    Cochlear microphonic (CM) and evoked neural (N-1) potentials were studied in two species of Doppler shift compensating bats with the aid of electrodes chronically implanted in the scala tympani. Potentials were recorded from animals fully recovered from the effects of anesthesia and surgery. InPteronotus p. parnellii andRhinolophus rouxi the CM amplitude showed a narrow band, high amplitude peak at a frequency about 200 Hz above the resting frequency of each species. InPteronotus the peak was 25–35 dB higher in amplitude than the general CM level below or above the frequency of the amplitude peak. InRhinolophus the amplitude peak was only a few dB above the general CM level but it was prominent because of a sharp null in a narrow band of frequencies just below the peak. The amplitude peak and the null were markedly affected by body temperature and anesthesia. InPteronotus high amplitude CM potentials were produced by resonance, and stimulated cochlear emissions were prominent inPteronotus but they were not observed inRhinolophus. InPteronotus the resonance was indicated by a CM afterpotential that occurred after brief tone pulses. The resonance was not affected by the addition of a terminal FM to the stimulus and when the ear was stimulated with broadband noise it resulted in a continual state of resonance. Rapid, 180 degree phase shifts in the CM were observed when the stimulus frequency swept through the frequency of the CM amplitude peak inPteronotus and the frequency of the CM null inRhinolophus. These data indicate marked differences in the physiological properties of the cochlea and in the mechanisms responsible for sharp tuning in these two species of bats

    Differing responses of red abalone (Haliotis rufescens) and white abalone (H. sorenseni) to infection with phage-associated Candidatus Xenohaliotis californiensis

    No full text
    The Rickettsiales-like prokaryote and causative agent of Withering Syndrome (WS)—Candidatus Xenohaliotis californiensis (Ca. Xc)—decimated black abalone populations along the Pacific coast of North America. White abalone—Haliotis sorenseni—are also susceptible to WS and have become nearly extinct in the wild due to overfishing in the 1970s. Candidatus Xenohaliotis californiensis proliferates within epithelial cells of the abalone gastrointestinal tract and causes clinical signs of starvation. In 2012, evidence of a putative bacteriophage associated with Ca. Xc in red abalone—Haliotis rufescens—was described. Recently, histologic examination of animals with Ca. Xc infection in California abalone populations universally appear to have the phage-containing inclusions. In this study, we investigated the current virulence of Ca. Xc in red abalone and white abalone at different environmental temperatures. Using a comparative experimental design, we observed differences over time between the two abalone species in mortality, body condition, and bacterial load by quantitative real time PCR (qPCR). By day 251, all white abalone exposed to the current variant of Ca. Xc held in the warm water (18.5 °C) treatment died, while red abalone exposed to the same conditions had a mortality rate of only 10%, despite a relatively heavy bacterial burden as determined by qPCR of posterior esophagus tissue and histological assessment at the termination of the experiment. These data support the current status of Ca. Xc as less virulent in red abalone, and may provide correlative evidence of a protective phage interaction. However, white abalone appear to remain highly susceptible to this disease. These findings have important implications for implementation of a white abalone recovery program, particularly with respect to the thermal regimes of locations where captively-reared individuals will be outplanted

    Janus—a comprehensive tool investigating the two faces of transcription

    Get PDF
    Motivation: Protocols to generate strand-specific transcriptomes with next-generation sequencing platforms have been used by the scientific community roughly since 2008. Strand-specific reads allow for detection of antisense events and a higher resolution of expression profiles enabling extension of current transcript annotations. However, applications making use of this strandedness information are still scarce. Results: Here we present a tool (Janus), which focuses on the identification of transcriptional active regions in antisense orientation to known and novel transcribed elements of the genome. Janus can compare the antisense events of multiple samples and assigns scores to identify mutual expression of either transcript in a sense/antisense pair, which could hint to regulatory mechanisms. Janus is able to make use of single-nucleotide variant (SNV) and methylation data, if available, and reports the sense to antisense ratio of regions in the vicinity of the identified genetic and epigenetic variation. Janus interrogates positions of heterozygous SNVs to identify strand-specific allelic imbalance. Availability: Janus is written in C/C++ and freely available at http://www.ikmb.uni-kiel.de/janus/janus.html under terms of GNU General Public License, for both, Linux and Windows 64×. Although the binaries will work without additional downloads, the software depends on bamtools (https://github.com/pezmaster31/bamtools) for compilation. A detailed tutorial section is included in the first section of the supplemental material and included as brief readme.txt in the tutorial archive. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Genome-wide signatures of convergent evolution in echolocating mammals

    Get PDF
    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised

    Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami

    Get PDF
    The September 2018, Mw 7.5 Sulawesi earthquake occurring on the Palu-Koro strike-slip fault system was followed by an unexpected localized tsunami. We show that direct earthquake-induced uplift and subsidence could have sourced the observed tsunami within Palu Bay. To this end, we use a physics-based, coupled earthquake–tsunami modeling framework tightly constrained by observations. The model combines rupture dynamics, seismic wave propagation, tsunami propagation and inundation. The earthquake scenario, featuring sustained supershear rupture propagation, matches key observed earthquake characteristics, including the moment magnitude, rupture duration, fault plane solution, teleseismic waveforms and inferred horizontal ground displacements. The remote stress regime reflecting regional transtension applied in the model produces a combination of up to 6 m left-lateral slip and up to 2 m normal slip on the straight fault segment dipping 65∘ East beneath Palu Bay. The time-dependent, 3D seafloor displacements are translated into bathymetry perturbations with a mean vertical offset of 1.5 m across the submarine fault segment. This sources a tsunami with wave amplitudes and periods that match those measured at the Pantoloan wave gauge and inundation that reproduces observations from field surveys. We conclude that a source related to earthquake displacements is probable and that landsliding may not have been the primary source of the tsunami. These results have important implications for submarine strike-slip fault systems worldwide. Physics-based modeling offers rapid response specifically in tectonic settings that are currently underrepresented in operational tsunami hazard assessment

    GeneChip analyses point to novel pathogenetic mechanisms in mantle cell lymphoma

    Get PDF
    The translocation t(11;14)(q13;q32) is the genetic hallmark of mantle cell lymphoma (MCL) but is not sufficient for inducing lymphomagenesis. Here we performed genome-wide 100K GeneChip Mapping in 26 t(11;14)-positive MCL and six MCL cell lines. Partial uniparental disomy (pUPD) was shown to be a recurrent chromosomal event not only in MCL cell lines but also in primary MCL. Remarkably, pUPD affected recurrent targets of deletion like 11q, 13q and 17p. Moreover, we identified 12 novel regions of recurrent gain and loss as well as 12 high-level amplifications and eight homozygously deleted regions hitherto undescribed in MCL. Interestingly, GeneChip analyses identified different genes, encoding proteins involved in microtubule dynamics, such as MAP2, MAP6 and TP53, as targets for chromosomal aberration in MCL. Further investigation, including mutation analyses, fluorescence in situ hybridisation as well as epigenetic and expression studies, revealed additional aberrations frequently affecting these genes. In total, 19 of 20 MCL cases, which were subjected to genetic and epigenetic analyses, and five of six MCL cell lines harboured at least one aberration in MAP2, MAP6 or TP53. These findings provide evidence that alterations of microtubule dynamics might be one of the critical events in MCL lymphomagenesis contributing to chromosomal instability

    A rock-surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in southern Norway

    Get PDF
    An index of the degree of rock-surface microweathering based on Schmidt hammer R-values is developed for use in the field without laboratory testing. A series of indices - I2 to In, where n is the number of successive blows with the hammer - is first proposed based on the assumption that the R-values derived from successive impacts on the same spot on a weathered rock surface converge on the value characteristic of an unweathered surface of the same lithology. Of these indices, the I5 index, which measures the difference between the mean R-value derived from first and fifth impacts as a proportion of the mean R-value from the fifth impact, is regarded as optimal: use of fewer impacts (e.g. in an I2 index) underestimates the degree of weathering whereas use of more impacts (e.g. in an I10 index) makes little difference and is therefore inefficient and may also induce an artificial weakening of the rock. Field tests of these indices on weathered glacially-scoured bedrock outcrops of nine common metamorphic and igneous rock types from southern Norway show, however, that even after ten impacts, successive R-values fail to approach the values characteristic of unweathered rock surfaces (e.g. bedrock from glacier forelands and road cuttings). An improved *I5 index is therefore preferred, in which the estimated true R-value of an unweathered rock surface is substituted. Weathered rock surfaces exposed to the atmosphere for ~10,000 years in southern Norway exhibit *I5 indices of 36-57%, values that reflect a similarly high degree of weathering irrespective of the rock type

    Inhibition of Anaplastic Lymphoma Kinase (ALK) Activity Provides a Therapeutic Approach for CLTC-ALK-Positive Human Diffuse Large B Cell Lymphomas

    Get PDF
    ALK positive diffuse large B-cell lymphomas (DLBCL) are a distinct lymphoma subtype associated with a poor outcome. Most of them feature a t(2;17) encoding a clathrin (CLTC)-ALK fusion protein. The contribution of deregulated ALK-activity in the pathogenesis and maintenance of these DLBCLs is not yet known. We established and characterized the first CLTC-ALK positive DLBCL cell line (LM1). LM1 formed tumors in NOD-SCID mice. The selective ALK inhibitor NVP-TAE684 inhibited growth of LM1 cells in vitro at nanomolar concentrations. NVP-TAE684 repressed ALK-activated signalling pathways and induced apoptosis of LM1 DLBCL cells. Inhibition of ALK-activity resulted in sustained tumor regression in the xenotransplant tumor model. These data indicate a role of CLTC-ALK in the maintenance of the malignant phenotype thereby providing a rationale therapeutic target for these otherwise refractory tumors

    Human Bone Marrow-Derived Stem Cells Acquire Epithelial Characteristics through Fusion with Gastrointestinal Epithelial Cells

    Get PDF
    Bone marrow-derived mesenchymal stem cells (MSC) have the ability to differentiate into a variety of cell types and are a potential source for epithelial tissue repair. Several studies have demonstrated their ability to repopulate the gastrointestinal tract (GIT) in bone marrow transplanted patients or in animal models of gastrointestinal carcinogenesis where they were the source of epithelial cancers. However, mechanism of MSC epithelial differentiation still remains unclear and controversial with trans-differentiation or fusion events being evoked. This study aimed to investigate the ability of MSC to acquire epithelial characteristics in the particular context of the gastrointestinal epithelium and to evaluate the role of cell fusion in this process. In vitro coculture experiments were performed with three gastrointestinal epithelial cell lines and MSC originating from two patients. After an 8 day coculture, MSC expressed epithelial markers. Use of a semi-permeable insert did not reproduce this effect, suggesting importance of cell contacts. Tagged cells coculture or FISH on gender-mismatched cells revealed clearly that epithelial differentiation resulted from cellular fusion events, while expression of mesenchymal markers on fused cells decreased over time. In vivo cell xenograft in immunodeficient mice confirmed fusion of MSC with gastrointestinal epithelial cells and self-renewal abilities of these fused cells. In conclusion, our results indicate that fusion could be the predominant mechanism by which human MSC may acquire epithelial characteristics when in close contact with epithelial cells from gastrointestinal origin . These results could contribute to a better understanding of the cellular and molecular mechanisms allowing MSC engraftment into the GIT epithelium

    Tonotopically Arranged Traveling Waves in the Miniature Hearing Organ of Bushcrickets

    Get PDF
    Place based frequency discrimination (tonotopy) is a fundamental property of the coiled mammalian cochlea. Sound vibrations mechanically conducted to the hearing organ manifest themselves into slow moving waves that travel along the length of the organ, also referred to as traveling waves. These traveling waves form the basis of the tonotopic frequency representation in the inner ear of mammals. However, so far, due to the secure housing of the inner ear, these waves only could be measured partially over small accessible regions of the inner ear in a living animal. Here, we demonstrate the existence of tonotopically ordered traveling waves covering most of the length of a miniature hearing organ in the leg of bushcrickets in vivo using laser Doppler vibrometery. The organ is only 1 mm long and its geometry allowed us to investigate almost the entire length with a wide range of stimuli (6 to 60 kHz). The tonotopic location of the traveling wave peak was exponentially related to stimulus frequency. The traveling wave propagated along the hearing organ from the distal (high frequency) to the proximal (low frequency) part of the leg, which is opposite to the propagation direction of incoming sound waves. In addition, we observed a non-linear compression of the velocity response to varying sound pressure levels. The waves are based on the delicate micromechanics of cellular structures different to those of mammals. Hence place based frequency discrimination by traveling waves is a physical phenomenon that presumably evolved in mammals and bushcrickets independently
    corecore