87 research outputs found

    meCLICK-Seq, a Substrate-Hijacking and RNA Degradation Strategy for the Study of RNA Methylation.

    Get PDF
    The fates of RNA species in a cell are controlled by ribonucleases, which degrade them by exploiting the universal structural 2'-OH group. This phenomenon plays a key role in numerous transformative technologies, for example, RNA interference and CRISPR/Cas13-based RNA editing systems. These approaches, however, are genetic or oligomer-based and so have inherent limitations. This has led to interest in the development of small molecules capable of degrading nucleic acids in a targeted manner. Here we describe click-degraders, small molecules that can be covalently attached to RNA species through click-chemistry and can degrade them, that are akin to ribonucleases. By using these molecules, we have developed the meCLICK-Seq (methylation CLICK-degradation Sequencing) a method to identify RNA modification substrates with high resolution at intronic and intergenic regions. The method hijacks RNA methyltransferase activity to introduce an alkyne, instead of a methyl, moiety on RNA. Subsequent copper(I)-catalyzed azide-alkyne cycloaddition reaction with the click-degrader leads to RNA cleavage and degradation exploiting a mechanism used by endogenous ribonucleases. Focusing on N6-methyladenosine (m6A), meCLICK-Seq identifies methylated transcripts, determines RNA methylase specificity, and reliably maps modification sites in intronic and intergenic regions. Importantly, we show that METTL16 deposits m6A to intronic polyadenylation (IPA) sites, which suggests a potential role for METTL16 in IPA and, in turn, splicing. Unlike other methods, the readout of meCLICK-Seq is depletion, not enrichment, of modified RNA species, which allows a comprehensive and dynamic study of RNA modifications throughout the transcriptome, including regions of low abundance. The click-degraders are highly modular and so may be exploited to study any RNA modification and design new technologies that rely on RNA degradation.UKRI (BBSRC DTP scholarships to S.M. and H.K.C) and the Jardine Foundation and Cambridge Trust (PhD scholarship to M.E.H.)

    Clonal haematopoiesis is not prevalent in survivors of childhood cancer

    Get PDF
    This project was funded by the Wellcome Trust Sanger Institute (grant number WT098051). G.S.V. is funded by a Wellcome Trust Senior Fellowship in Clinical Science (WT095663MA). F.F. is funded by Compagnia di San Paolo Grant: “Le cellule staminali del sangue nei guariti di leucemia” Codice SIME 2013-0958 (codice ROL 4201). I.V is funded by the Spanish Ministerio de Economía y Competitividad, Programa Ramón y Cajal

    Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML

    Get PDF
    Epigenetic regulators, such as EZH2, are frequently mutated in cancer, and loss-of-function EZH2 mutations are common in myeloid malignancies. We have examined the importance of cellular context for Ezh2 loss during the evolution of acute myeloid leukemia (AML), where we observed stage-specific and diametrically opposite functions for Ezh2 at the early and late stages of disease. During disease maintenance, WT Ezh2 exerts an oncogenic function that may be therapeutically targeted. In contrast, Ezh2 acts as a tumor suppressor during AML induction. Transcriptional analysis explains this apparent paradox, demonstrating that loss of Ezh2 derepresses different expression programs during disease induction and maintenance. During disease induction, Ezh2 loss derepresses a subset of bivalent promoters that resolve toward gene activation, inducing a feto-oncogenic program that includes genes such as Plag1, whose overexpression phenocopies Ezh2 loss to accelerate AML induction in mouse models. Our data highlight the importance of cellular context and disease phase for the function of Ezh2 and its potential therapeutic implications.The Huntly laboratory is funded by CRUK (program C18680/ A25508), the European Research Council (grant 647685 COMAL), the Kay Kendall Leukaemia Fund, the Medical Research Council (MRC), Bloodwise, the Wellcome Trust, and the Cambridge National Institute of Health Research Biomedical Research Centre. F. Basheer is a recipient of a Wellcome Trust PhD for Clinicians award. P. Gallipoli is funded by the Wellcome Trust (109967/Z/15/Z). We acknowledge the Wellcome Trust/ MRC center grant (097922/Z/11/Z) and support from Wellcome Trust strategic award 100140. Research in the laboratory is also supported by core funding from the Wellcome Trust and MRC to the Wellcome-MRC Cambridge Stem Cell Institute. This research was supported by the Cambridge National Institute of Health Research Biomedical Research Centre Cell Phenotyping Hub

    A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) is an aggressive cancer with a poor prognosis, for which mainstream treatments have not changed for decades. To identify additional therapeutic targets in AML, we optimize a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening platform and use it to identify genetic vulnerabilities in AML cells. We identify 492 AML-specific cell-essential genes, including several established therapeutic targets such as DOT1L\textit{DOT1L}, BCL2\textit{BCL2}, and MEN1\textit{MEN1}, and many other genes including clinically actionable candidates. We validate selected genes using genetic and pharmacological inhibition, and chose KAT2A\textit{KAT2A} as a candidate for downstream study. KAT2A\textit{KAT2A} inhibition demonstrated anti-AML activity by inducing myeloid differentiation and apoptosis, and suppressed the growth of primary human AMLs of diverse genotypes while sparing normal hemopoietic stem-progenitor cells. Our results propose that KAT2A inhibition should be investigated as a therapeutic strategy in AML and provide a large number of genetic vulnerabilities of this leukemia that can be pursued in downstream studies.This work was funded by the Kay Kendall Leukaemia Fund (KKLF) and the Wellcome Trust (WT098051). G.S.V. is funded by a Wellcome Trust Senior Fellowship in Clinical Science (WT095663MA) and work in his laboratory is funded by Bloodwise. C.P. is funded by a Kay Kendall Leukaemia Fund Intermediate Fellowship (KKL888)

    Percutaneous Coronary Intervention Versus Medical Therapy for Chronic Total Occlusion of Coronary Arteries:A Systematic Review and Meta-Analysis

    Get PDF
    PURPOSE OF REVIEW: Chronic total occlusion (CTO) of the coronary arteries is a significant clinical problem and has traditionally been treated by medical therapy or coronary artery bypass grafting. Recent studies have examined percutaneous coronary intervention (PCI) as an alternative option. RECENT FINDINGS: This systematic review and meta-analysis compared medical therapy to PCI for treating CTOs. PubMed and Embase were searched from their inception to March 2019 for studies that compared medical therapy and PCI for clinical outcomes in patients with CTOs. Quality of the included studies was assessed by Newcastle-Ottawa scale. The results were pooled by DerSimonian and Laird random- or fixed-effect models as appropriate. Heterogeneity between studies and publication bias was evaluated by I2 index and Egger's regression, respectively. Of the 703 entries screened, 17 studies were included in the final analysis. This comprised 11,493 participants. Compared to PCI, medical therapy including randomized and observational studies was significantly associated with higher risk of all-cause mortality (risk ratio (RR) 1.99, 95% CI 1.38-2.86), cardiac mortality (RR 2.36 (1.97-2.84)), and major adverse cardiac event (RR 1.25 (1.03-1.51)). However, no difference in the rate of myocardial infarction and repeat revascularization procedures was observed between the two groups. Univariate meta-regression demonstrated multiple covariates as independent moderating factors for myocardial infarction and repeat revascularization but not cardiac death and all-cause mortality. However, when only randomized studies were included, there was no difference in overall mortality or cardiac death. In CTO, when considering randomized and observational studies, medical therapy might be associated with a higher risk of mortality and myocardial infarction compared to PCI treatment

    Regulation of RasGRP1 Function in T Cell Development and Activation by Its Unique Tail Domain

    Get PDF
    The Ras-guanyl nucleotide exchange factor RasGRP1 plays a critical role in T cell receptor-mediated Erk activation. Previous studies have emphasized the importance of RasGRP1 in the positive selection of thymocytes, activation of T cells, and control of autoimmunity. RasGRP1 consists of a number of well-characterized domains, which it shares with its other family members; however, RasGRP1 also contains an ∌200 residue-long tail domain, the function of which is unknown. To elucidate the physiological role of this domain, we generated knock-in mice expressing RasGRP1 without the tail domain. Further analysis of these knock-in mice showed that thymocytes lacking the tail domain of RasGRP1 underwent aberrant thymic selection and, following TCR stimulation, were unable to activate Erk. Furthermore, the deletion of the tail domain led to enhanced CD4+ T cell expansion in aged mice, as well as the production of autoantibodies. Mechanistically, the tail-deleted form of RasGRP1 was not able to traffic to the cell membrane following stimulation, indicating a potential reason for its inability to activate Erk. While the DAG-binding C1 domain of RasGRP1 has long been recognized as an important factor mediating Erk activation, we have revealed the physiological relevance of the tail domain in RasGRP1 function and control of Erk signaling

    Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death

    Get PDF
    Acknowledgements We wish to thank the Barts Cancer Institute tissue bank for sample collection and processing. This research was supported by the BCI Flow cytometry facility (CRUK Core Award C16420/A18066). This work was supported by the Wellcome Trust (PG, 109967/Z/15/Z), the American Society of Haematology (PG, Global Research Award) and Cancer Research UK (PG, Advanced Clinician Scientist fellowship, C57799/A27964). K.R-P. was supported by the Academy of Medical Sciences (SBF004\1099) J.H.M.P. was supported by a research grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3948 and co-funded under the European Regional Development Fund and by FutureNeuro industry partners. K.T. was funded by Wellcome Trust (Grant References: RG94424, RG83195, G106133), UKRI Medical Research Council (RG83195) and Leukaemia UK (G108148).Peer reviewedPublisher PD

    Cardiovascular magnetic resonance predictors of heart failure in hypertrophic cardiomyopathy: the role of myocardial replacement fibrosis and the microcirculation

    Get PDF
    Introduction: Heart failure (HF) in hypertrophic cardiomyopathy (HCM) is associated with high morbidity and mortality. Predictors of HF, in particular the role of myocardial fibrosis and microvascular ischemia remain unclear. We assessed the predictive value of cardiovascular magnetic resonance (CMR) for development of HF in HCM in an observational cohort study. Methods: Serial patients with HCM underwent CMR, including adenosine first-pass perfusion, left atrial (LA) and left ventricular (LV) volumes indexed to body surface area (i) and late gadolinium enhancement (%LGE- as a % of total myocardial mass). We used a composite endpoint of HF death, cardiac transplantation, and progression to NYHA class III/IV. Results: A total of 543 patients with HCM underwent CMR, of whom 94 met the composite endpoint at baseline. The remaining 449 patients were followed for a median of 5.6 years. Thirty nine patients (8.7%) reached the composite endpoint of HF death (n = 7), cardiac transplantation (n = 2) and progression to NYHA class III/IV (n = 20). The annual incidence of HF was 2.0 per 100 person-years, 95% CI (1.6–2.6). Age, previous non-sustained ventricular tachycardia, LV end-systolic volume indexed to body surface area (LVESVI), LA volume index ; LV ejection fraction, %LGE and presence of mitral regurgitation were significant univariable predictors of HF, with LVESVI (Hazard ratio (HR) 1.44, 95% confidence interval (95% CI) 1.16–1.78, p = 0.001), %LGE per 10% (HR 1.44, 95%CI 1.14–1.82, p = 0.002) age (HR 1.37, 95% CI 1.06–1.77, p = 0.02) and mitral regurgitation (HR 2.6, p = 0.02) remaining independently predictive on multivariable analysis. The presence or extent of inducible perfusion defect assessed using a visual score did not predict outcome (p = 0.16, p = 0.27 respectively). Discussion: The annual incidence of HF in a contemporary ambulatory HCM population undergoing CMR is low. Myocardial fibrosis and LVESVI are strongly predictive of future HF, however CMR visual assessment of myocardial perfusion was not

    T1 mapping in cardiac MRI

    Get PDF
    Quantitative myocardial and blood T1 have recently achieved clinical utility in numerous pathologies, as they provide non-invasive tissue characterization with the potential to replace invasive biopsy. Native T1 time (no contrast agent), changes with myocardial extracellular water (edema, focal or diffuse fibrosis), fat, iron, and amyloid protein content. After contrast, the extracellular volume fraction (ECV) estimates the size of the extracellular space and identifies interstitial disease. Spatially resolved quantification of these biomarkers (so-called T1 mapping and ECV mapping) are steadily becoming diagnostic and prognostically useful tests for several heart muscle diseases, influencing clinical decision-making with a pending second consensus statement due mid-2017. This review outlines the physics involved in estimating T1 times and summarizes the disease-specific clinical and research impacts of T1 and ECV to date. We conclude by highlighting some of the remaining challenges such as their community-wide delivery, quality control, and standardization for clinical practice
    • 

    corecore